

Fisheries in EMS Habitats Regulations Assessment for Amber and Green risk categories

European Marine Site: Exe Estuary SPA

Fishing activities assessed: Digging with forks

D&S IFCA Interaction ID	Fishing Activity	Feature(s)	Supporting habitat
HRA_UK9010081_AR40		 Non-breeding Avocet Non-breeding Black-tailed 	Intertidal coarse sediment
HRA_UK9010081_P40		godwit Non-breeding Dark-bellied Brent goose 	Intertidal mixed sediments
HRA_UK9010081_K40	Bait Digging	 Non-breeding Dunlin Non-breeding Grey plover 	Intertidal mud
HRA_UK9010081_L40		 Non-breeding Oystercatcher Non-breeding Slavonian grebe Waterbird assemblage 	Intertidal sand & muddy sand

Version Control History				
Version	Author	Date	Comment	
1	Katherine Stephenson	06/03/19	Final draft complete to be sent to NE.	
1.1	Sarah Clark	02/04/2019	QA'ing before sent to NE	

Contents

1. Introduction	4
1.1 Need for an HRA assessment	
1.2 Documents reviewed to inform this assessment	4
2. Information about the EMS	5
2.1 Overview and qualifying features	5
2.2 Conservation Objectives	
3. Interest feature(s) of the EMS categorised as 'red' risk and overview of management	
measure(s)	6
4. Information about the fishing activities within the site	6
5. Test for Likely Significant Effect (LSE)	7
5.1 Table 1: Assessment of LSE	
6. Appropriate Assessment	
6.1 Potential risks to features	9
7. Conclusion	19
8. In-combination assessment	
9. Summary of consultation with Natural England	19
10. Integrity test	19
Annex 1: Reference list	20
Annex 2: Natural England's consultation advice	
Annex 3: Site Maps	24
Annex 4: Fishing activity maps	26
Annex 5: Bird usage of the Exe Estuary	27
Annex 6: Summary of Results of the D&S IFCA Intertidal Handwork Survey	28
Annex 7: Pressures Audit Trail	31

1. Introduction

1.1 Need for an HRA assessment

In 2012, the Department for Environment, Food and Rural Affairs (Defra) announced a revised approach to the management of commercial fisheries in European Marine Sites (EMS). The objective of this revised approach is to ensure that all existing and potential commercial fishing activities are managed in accordance with Article 6 of the Habitats Directive.

This approach is being implemented using an evidence based, risk-prioritised, and phased basis. Risk prioritisation is informed by using a matrix of the generic sensitivity of the sub-features of EMS to a suite of fishing activities as a decision making tool. These sub-feature-activity combinations have been categorised according to specific definitions, as red, amber, green or blue.

Activity/feature interactions identified within the matrix as red risk have the highest priority for implementation of management measures by the end of 2013 in order to avoid the deterioration of Annex I features in line with obligations under Article 6(2) of the Habitats Directive.

Activity/feature interactions identified within the matrix as amber risk require a site-level assessment to determine whether management of an activity is required to conserve site features. Activity/feature interactions identified within the matrix as green also require a site level assessment if there are "in combination effects" with other plans or projects.

Site level assessments are being carried out in a manner that is consistent with the provisions of Article 6(3) of the Habitats Directive. The aim of this assessment is to determine whether management measures are required in order to ensure that fishing activity or activities will have no adverse effect on the integrity of the site.

The purpose of this site specific assessment document is to assess whether or not in the view of Devon and Severn Inshore Fisheries and Conservation Authority (D&S IFCA) the fishing activity of "Bait Digging" has a likely significant effect on the intertidal sediment features of the Exe Estuary SPA, and on the basis of this assessment whether or not it can be concluded that bait digging will not have an adverse effect on the integrity of this EMS.

1.2 Documents reviewed to inform this assessment

- Natural England's risk assessment Matrix of fishing activities and European habitat features and protected species
- Reference list (Annex 1)
- Natural England's consultation advice (Annex 2)
- Site map(s) sub-feature/feature location and extent (Annex 3)
- Fishing activity data (map(s), etc.) (Annex 4)

2. Information about the EMS

The Exe Estuary SPA includes both marine areas (i.e. land covered continuously or intermittently by tidal waters) and land which is not subject to tidal influence. Sub-features have been identified which describe the key habitats within the European marine site necessary to support the birds that qualify within the SPA. Bird usage of the site varies seasonally, with different areas being favoured over others at certain times of the year. The mussel beds in particular are important in supporting the wintering wader and wildfowl assemblage to enable them to acquire sufficient energy reserves to ensure population survival (English Nature, 2001 & Natural England, 2015). Figure 1 (Annex 3) shows the boundary of the Exe Estuary SPA.

2.1 Overview and qualifying features

The Exe Estuary SPA qualifies under Articles 4.1 and 4.2 of the EU Birds Directive by supporting the following interest features (Natural England, 2015):

- Non-breeding Avocet (*Recurvirostra avosetta*)
- Non-breeding Black-tailed godwit (Limosa limosa islandica)
- Non-breeding Dark-bellied Brent goose (Branta bernicia bernicia)
- Non-breeding Dunlin (Calidris alpina alpina)
- Non-breeding Grey plover (Pluvialis squatarola)
- Non-breeding Oystercatcher (Haematopus ostralegus)
- Non-breeding Slavonian grebe (*Podiceps auritus*)
- Waterbird assemblage

The key supporting habitats are:

- Circalittoral rock
- Freshwater and coastal grazing marsh
- Infralittoral rock
- Intertidal biogenic reef: mussel beds
- Intertidal coarse sediment
- Intertidal mixed sediments
- Intertidal mud
- Intertidal rock
- Intertidal sand & muddy sand
- Intertidal seagrass beds
- Intertidal stony reef
- Subtidal biogenic reefs: mussel beds
- Subtidal coarse sediment
- Subtidal mixed sediment
- Subtidal sand
- Subtidal seagrass beds
- Subtidal stony reef
- Water column
- Saltmarsh
 - Atlantic salt meadows (Glauco-Puccinellietalla maritimae)
 - Salicornia and other annuals colonising mud & sand
 - Spartina swards (Spartinion maritimae)

2.2 Conservation Objectives

The site's conservation objectives apply to the Special Protection Area and the individual species and/or assemblage of species for which the site has been classified.

The objectives are to ensure that, subject to natural change, the integrity of the site is maintained or restored as appropriate, and that the site contributes to achieving the aims of the Wild Birds Directive, by maintaining or restoring:

- the extent and distribution of the habitats of the qualifying features
- the structure and function of the habitats of the qualifying features
- the supporting processes on which the habitats of the qualifying features rely
- the populations of the qualifying features
- the distribution of the qualifying features within the site

3. Interest feature(s) of the EMS categorised as 'red' risk and overview of management measure(s)

None – this site has no gear-feature interactions categorised as "red" risk.

4. Information about the fishing activities within the site

A full description of D&S IFCA's current understanding of the levels and distribution of bait digging within the Exe Estuary SPA can be found in Stephenson (2019). Bait digging occurs on the intertidal sand and mudflats, with effort being highest on the eastern shore of the estuary, in the Cockle Sands & Shelley Bank area. Bait digging occurs on the Exe all year round, peaking in the summer on the eastern shore, but in the autumn on the western shore.

During May and June 2016 D&S IFCA conducted survey visits to the estuary to identify the level of Intertidal handwork occurring (results can be found in Annex 6). The surveys looked at shellfish collection, crab tiling, and bait digging. Bait digging accounted for just over one third of the hand-gathering activity observed during the survey (35% of activity on the west shore, 38% on the east shore). Throughout the survey the estuary was visited 16 times, with bait diggers being seen on nine of these visits. Twelve bait diggers were observed on five weekday visits, and six diggers were seen over four weekend visits. This suggests this activity occurs at slightly higher levels during weekdays, which is contrary to the general pattern of total hand-gathering activity (Figure 10). However, in line with the general pattern of hand-gathering activity (Figure 9), the majority of bait digging took place on spring tides, with 15 bait diggers observed over seven visits which occurred on spring tides, whereas diggers were only seen on two visits occurring on neap tides (a total of three diggers). Therefore, it seems this activity is largely temporally limited by spring tides.

In term of backfilling holes that were dug, only 50% of bait diggers on the Exe Estuary, who were interviewed, reported that they backfilled holes, even though this is part of the Exe Estuary voluntary code of conduct. From visual surveys most of the holes seen had not been backfilled.

Other fishing activities within the EMS are described in the Fishing Activity Report (Gray, 2015).

5. Test for Likely Significant Effect (LSE) 5.1 Table 1: Assessment of LSE

1. Is the activity/activities directly connected with or necessary to the management	No				
of the site for nature conservation?					
2. What pressures (such as abrasion, disturbance) are potentially exerted by the gear type(s)	 Above water noise (Bird features - Sensitive) Visual disturbance (Bird features - Sensitive) Abrasion & disturbance of the substrate on the surface of the seabed (Supporting habitat - Sensitive) Penetration/disturbance of the substrate below the surface of the seabed, including abrasion (Supporting habitat – Sensitive) Physical changes (to another seabed type) (Supporting habitat – Sensitive) Removal of non-target species (Bird feature & supporting habitat – Sensitive) Removal of target species (Supporting habitat – Sensitive) Removal of target species (Supporting habitat – Sensitive) 				
3. Is the feature potentially	-	e currently no management measures			
exposed to the pressure(s)? 4. What are the potential		gging in the Exe Estuary SPA. Iment supporting habitats have the following			
effects/impacts of the	targets (Natural B				
pressure(s) on the feature,	Maintain the structure, function & supporting processes				
taking into account the	associated with the feature and its supporting habitat (all				
exposure level?	 bird features) Maintain the extent & distribution of suitable habitat which supports the feature for all necessary stages of the non-breeding/wintering period (all bird features) Maintain the distribution, abundance & availability of the most important prey items (avocet, black-tailed godwit, dunlin, grey plover, Slavonian grebe) Restore availability of key prey at preferred sizes (oystercatcher) Maintain the structure, function & availability of the habitat, which supports the assemblage feature for all stages of the non-breeding period (waterbird assemblage) The bird features have the following target: The frequency, duration &/or intensity of disturbance affecting foraging &/or roosting should not reach levels that substantially affect the feature. Given that the features/supporting habitats could be exposed to the pressures listed in Section 2 of this table, there is 				
5. Is the potential scale or	Alone	se targets will not be met. Yes, there is potential for likely significant			
magnitude of any effect likely to		effect.			
be significant?	In- combination	See Section 8.			
	complination				

6. Have NE been consulted on	NE has not been consulted at this time.
this LSE test? If yes, what was	
NE's advice?	

6. Appropriate Assessment

6.1 Potential risks to features

The potential pressures, impacts and exposure by gear type(s) for each feature/sub-feature are summarised in Table 2.

Table 2: Summary of Impacts

Feature/ Supporting habitat(s)	Target Attributes/Conserv ation Objectives	Potential pressure (such as abrasion, disturbance) exerted by gear type(s)	Potential ecological impacts of pressure exerted by the activity/activities on the feature (reference to conservation objectives)	Level of exposure of feature to pressure	Mitigation measures
All bird features • Intertidal coarse sediment • Intertidal mixed sediment • Intertidal mud • Intertidal sand & muddy sand	 Target Attribute: Maintain the structure, function & supporting processes associated with the feature and its supporting habitat Maintain the extent & distribution of suitable habitat which supports the feature for all necessary stages of the non- breeding/wintering period Conservation Objective: Maintain or restore: the extent and distribution of the 	Abrasion & disturbance of the substrate on the surface of the seabed. Penetration/dist urbance of the substrate below the surface of the seabed, including abrasion. Physical changes (to another seabed type).	Bait digging usually occurs to depths of 30cm, unearthing a deeper sediment that would usually remain undisturbed (Jackson and James, 1979). Changes can therefore occur in sediment characteristics as a result of bait digging. In unexploited sediments, a 10cm layer of well- mixed sand is created by bioturbation (primarily by lugworms), overlying a layer of sands and shell (Anderson and Meyer, 1986). Undug sediment was found to have a higher organic content which is generally not site specific. The process of turning over the sediment and erosion of sediment mounds by tides and wave action leads to a loss of finer fractions and associated organic material. In contrast, the basins may collect organic matter and fine sediments (Anderson and Meyer, 1986). This could have implications for local sediment load and turbidity levels (Watson et al., 2017). Transport of fine sediment and previously buried contaminants takes place at the sediment surface.	Bait digging is commonplace on the sand and mudflats on both shores of the estuary; between Starcross and Cockwood on the west side, and just off the Imperial Recreation (Rec) Ground at Exmouth on the eastern side. Bait digging occurs at low tide (mostly spring tides), all year round. Stephenson (2019) found that the area off the Rec Ground experience higher levels of activity than Starcross- Cockwood, with activity being highest in the summer months.	The Exe Estuary Management Partnership's (2018) voluntary code of conduct requires bait diggers to backfill their holes. However, D&S IFCA's observations have found that not all bait diggers adhere to this. Through the IFCA's Byelaw Review process, D&S IFCA will be reviewing all byelaws relating to hand working (including bait digging). Options for management will include, no action, voluntary measures and the

					
	 qualifying features the structure and function of the habitats of the qualifying features the supporting processes on which the habitats of the qualifying features rely 		If the mounds of sediments are subsequently returned through the process of back or in-filling, then the effect of the disturbance is reduced and recovery can occur within three weeks (Fowler, 1999). Recovery rates are therefore influenced by the energy of the site, and behaviour of the bait diggers. Coarse sand beaches with considerable wave action will recover more quickly than sheltered sites. Experimentally dug plots in a very sheltered location in the Menai Strait were still visible after a year, although this is thought to be due to the presence of boulder clay (Johnson, 1984). Other, less sheltered, sites have reported a timeframe of 25 days for holes to disappear (Johnson, 1984).	Whereas at Starcross- Cockwood there was little seasonal variation in effort. The area surveyed at the Rec Ground was approximately 132.5 hectares, with the mean number of diggers seen per visit being 0.8, this equates to an average of 0.006 diggers per hectare. However, it should be noted that almost all activity occurred within the southern half of the survey area, so a more realistic average bait diggers/hectare figure is 0.12. At Starcross- Cockwood the mean number of bait diggers per visit was 0.5, over an area of approximately 57ha (0.008 diggers per hectare). Therefore, the intensity is much higher off the Rec Ground.	potential introduction of a Hand Working Byelaw, which would allow the IFCA to monitor levels of this activity in the future and adapt to changes in effort/ environmental conditions if necessary. During 2019 D&S IFCA's Byelaw and Permitting Sub- committee will consider what management may be appropriate, which may include a requirement to backfill holes/trenches.
Waterbird	Target Attribute:	Abrasion &	See above.	(Figure 3, Annex 4) See above.	See above.
 assemblage Intertidal coarse sediment Intertidal mixed sediment Intertidal 	Maintain the structure, function & availability of the habitat, which supports the assemblage feature for all stages of the non-breeding period Conservation	disturbance of the substrate on the surface of the seabed. Penetration/dist urbance of the substrate below the surface of			

mud • Intertidal sand & muddy sand	 Objective: Maintain or restore: the extent and distribution of the habitats of the qualifying features the structure and function of the habitats of the qualifying features the supporting processes on which the habitats of the qualifying features rely 	the seabed, including abrasion. Physical changes (to another seabed type).			
Avocet, Black- tailed godwit, Dark-bellied Brent goose, Dunlin, Grey plover, Oystercatcher • Intertidal coarse sediment • Intertidal mixed sediment • Intertidal mud • Intertidal sand & muddy sand	 Target Attribute: Maintain the area of open and unobstructed terrain around roosting and feeding sites. Conservation Objective: Maintain or restore: the extent and distribution of the habitats of the qualifying features the structure and function of the habitats of the qualifying features 	Physical change to another seabed type. Visual disturbance.	Bait digging would not obstruct line of sight on the intertidal sediments.	Obstruction to the intertidal sediments caused by bait digging is not believed to be significant to prohibit bird features from feeding.	No mitigation necessary.
Grey plover, Slavonian Grebe • Intertidal	Target Attribute: • Maintain the distribution, abundance &	Removal of target species. Removal of non-	Both blow lugworm (<i>Arenicola marina</i>) and king ragworm (<i>Alitta virens</i>) are targeted by bait diggers on the Exe Estuary.	Blow lugworm (<i>Arenicola marina</i>) is the main target species on the eastern shore of the Exe	Through the IFCA's Byelaw Review process, D&S IFCA will be reviewing all

coarse	availability of the	target species.	Contrasting evidence exists as to the <i>direct</i>	Estuary, whilst king	byelaws relating to
 Intertidal mixed sediment Intertidal mud Intertidal sand & muddy sand 	 availability of the most important prey items Conservation Objective: Maintain or restore: the populations of the qualifying features the distribution of the qualifying features within the site 	target species.	environmental effects of bait digging for lugworm. Relative to other exploited intertidal invertebrates, blow lugworm are relatively resilient to exploitation and disturbance because of their relative fecundity and widespread distribution (Fowler, 1999). In addition, <i>A. marina</i> exhibit a marked annual cycle in the numbers and condition of individuals, so that any changes in population structure correlated to bait digging, would have to control for these factors (Olive, 1993). Removal rates of 50-70% of worms in the area dug have been reported in the literature (Heilgenberg 1987, Blake 1979) but D&S IFCA observations suggest this may be much lower in some areas, especially where large areas of lugworm exist, and holes are relatively well spread out.	ragworm (<i>Alitta virens</i>) is the main target on the west (Stephenson, 2019). No respondents to D&S IFCA surveys had noticed any long-term trends in bait availability, most reporting that it is fairly consistent digging on the Exe (one respondent had been digging on the Exe for 40 years) (Stephenson, 2019).	hand working (including bait digging). Options for management will include, no action, voluntary measures and the potential introduction of a Hand Working Byelaw, which would allow the IFCA to monitor levels of this activity in the future and adapt to changes in effort/ environmental conditions if necessary.
			A wide range of responses by <i>A. marina</i> to exploitation or experimental simulations of exploitation have been found, relating to local environmental conditions and the intensity and distribution of bait digging activity. Olive (1993) describes the scenario which led to complete removal of all lugworms from a large area of a National Nature Reserve in Northumberland in 1984, with densities falling from >40m ⁻² to <1m ⁻² . When the site was closed to bait digging it repopulated within a matter of months, thanks to the presence of extensive non-exploited populations nearby. Similarly, lugworm populations in the Dutch Wadden Sea appear to be unaffected by large scale commercial exploitation, with an estimated 2 x 10 ⁷ individuals take annually. However, Cryer et al. (1987) found no recovery in worm densities after six months following experimental removal, although natural densities at the test site in		

South Wales were low (9-16 m ²) and the survey ran through the less productive winter months. The capacity of a population to withstand bait digging activities therefore relies on a number of factors including the size of the exploited area relative to the total lugworm bed, the presence of other lugworm beds nearby, the presence of nursery areas, the relative exploitation of adult and juverile lugworms, and the intensity and seasonality of bait digging. However, on the whole they are thought to be resilient to bait digging. <i>A. virens</i> is a keystone interdial species as prey for fish, birds and crustaceans, is a predator of other invertebrates and has an important role in bioturbation of the sediment (Walson et al. 2017a). King ragworm are generally found in more sheltered sediment areas but they can also be found in more mixed sediments (E West, Pers. Obs.). Differing reports exist of the life- history and population characteristics of <i>A. virens</i> . Whilst early studies of North American populations suggested a mean age at breeding of >3 years with the population form the Meai Straight, Wales was thought to mature later, and to have very few Ogroup individual present. The later population suggested a mean age to be long of >4 years with the population form the Meai Straight, Wales was thought to mature later, and to have very few Ogroup individual present. The latter population study for a study found similar densities (~15m ² during the summer, -3m ² during the winter) of A. <i>virens</i> theofore seen as being vulnerable to exploitation. On the North East coast of England, a study found similar densities (~15m ² during the summer, -3m ² during the winter) of A. <i>virens</i> to both exploited and unexploited populations Bake (1979), suggesting that at least some population as re	
for fish, birds and crustaceans, is a predator of other invertebrates and has an important role in bioturbation of the sediment (Watson et al. 2017a). King ragworm are generally found in more sheltered sediment areas but they can also be found in more mixed sediments (E West, Pers. Obs.). Differing reports exist of the life- history and population characteristics of <i>A.virens</i> . Whilst early studies of North American populations suggested a mean age at breeding of >3 years with the population dominated by 0- group individuals, a population from the Menai Straight, Wales was thought to mature later, and to have very few 0-group individual present. The latter population was therefore seen as being vulnerable to exploitation. On the North East coast of England, a study found similar densities (-15m ² during the summer, -3m ² during the winter) of <i>A. virens</i> in both exploited and unexploited populations Blake (1979), suggesting that at least some populations are unaffected by bait digging. In other cases the	ran through the less productive winter months. The capacity of a population to withstand bait digging activities therefore relies on a number of factors including the size of the exploited area relative to the total lugworm bed, the presence of other lugworm beds nearby, the presence of nursery areas, the relative exploitation of adult and juvenile lugworms, and the intensity and seasonality of bait digging. However, on the whole they are thought to be resilient to bait
thought to benefit <i>A.virens</i> , due to its opportunistic nature (Evans et al. 2015).	for fish, birds and crustaceans, is a predator of other invertebrates and has an important role in bioturbation of the sediment (Watson et al. 2017a). King ragworm are generally found in more sheltered sediment areas but they can also be found in more mixed sediments (E West, Pers. Obs.). Differing reports exist of the life- history and population characteristics of <i>A.virens.</i> Whilst early studies of North American populations suggested a mean age at breeding of >3 years with the population dominated by 0- group individuals, a population from the Menai Straight, Wales was thought to mature later, and to have very few 0-group individual present. The latter population was therefore seen as being vulnerable to exploitation. On the North East coast of England, a study found similar densities (~15m ² during the summer, ~3m ² during the winter) of <i>A. virens</i> in both exploited and unexploited populations Blake (1979), suggesting that at least some populations are unaffected by bait digging. In other cases the change in macrofaunal community has been thought to benefit <i>A. virens</i> , due to its

Bait digging can have adverse effects on a wide	
variety of species as a result of physical	
damage, burial, smothering and/or exposure to	
desiccation or predation to non-target	
invertebrates. Recovery of small short-lived	
invertebrates will usually occur within a year, but	
populations of larger, long-lived invertebrates	
may take much longer (Fowler, 1999). In some	
extreme cases local diversity may be reduced,	
which may be especially true in physically fragile	
environments such as eelgrass or mussel beds	
(Fowler, 1999). Similarly, Beukema (1995) found	
that within a 1km ² area of the Dutch Wadden	
Sea, local lugworm stock declined by more than	
double over a four year mechanical digging	
period. As a result of this decline, total	
zoobenthic biomass also declined, with short	
lived species showing a marked reduction during	
the digging period. Recovery of the benthos took	
several years, especially by the slower	
establishing species. However, if disturbance by	
digging is short term, benthic communities can	
recover within six months (Beukema, 1995).	
Jackson and James (1979) investigated the	
effects of bait digging on cockle populations.	
They found that increased digging in an area	
caused higher cockle mortality, particular on	
smaller individuals. The cause of mortality was	
due to burial/smothering as individuals that were	
buried at a depth of 10cm rarely survived.	
However, it is important to note that the effects	
on macrofaunal communities can differ	
substantially between estuaries. For example,	
the mud content of an estuary can impact the	
amount of disturbance caused by bait digging. Estuaries that have a low mud content are	
usually associated with a greater infaunal	
usually associated with a greater inflautial	

			recover within 7 days. If an estuary has a high mud content it is more likely to be dominated by key species and can therefore take longer recover (Carvalho et al., 2013).		
features (in relation to the intertidal sediment supporting habitats)	frequency, no ion &/or sity of Vis rbance dis ting foraging roosting should each levels that tantially affect eature. rvation ive: in or restore: populations of qualifying	oise. isual isturbance.	Bird disturbance is also a major concern, especially where peak bait digging coincides with peak bird abundance or intertidal activity (Townshend and O'Connor, 1993). Bait collection has been found to induce a 'temporary loss of habitat' for some bird species, with bait collector numbers negatively correlating with wader and gull abundance (Watson et al., 2017). Wildfowl, such as mute swans may be the least likely group to be vulnerable to disturbance, as many of these species are fed directly by humans (Liley and Fearnley 2012, Watson et al. 2017). Lugworm is an important prey item for the Grey Plover and the Bar-Tailed Godwits in the Severn (Goss-Custard et al., 1991). There is an important link between macrofaunal biomass (energy content) and the behaviour of wading birds. Wading birds have been shown to extend their feeding period, increase their attack rate, broaden their prey or move to different areas in order to cope with reductions in infaunal biomass (Zwarts, 1993). Although the process of bait digging can directly target prey items for certain bird species, it can also indirectly impact the forging efficiency of wading birds through increased mortality of associated invertebrate fauna. For example, Shepherd and Boates (1999) found that foraging	Bait digging occurs at low tide (mostly spring tides), two hours either side of low, during the day, all year round. However, bait digging levels were generally lowest in the winter, when the over-wintering bird populations would be present. Bait diggers usually work as a hobby or as and when they need bait for recreational angling. Bait digging is usually a slow, solitary and quiet process. Disturbance would cause a temporary change in distribution and reduction in bird numbers where bait digging is occurring. The extent of disturbance from human presence would be a bait digger walking from the shore to the area of digging, the area worked, and then walking back to the shore line.	In 2018 the South East Devon Habitat Regulations Partnership established Wildlife Refuge Zones (WRZs) to mitigate for potential disturbance to the SPA birds from recreational activities (SEDHRP, 2019). Monitoring of compliance with these zones is being undertaken by the Habitat Mitigation Officers. D&S IFCA will be kept informed of the findings of this monitoring. Through the IFCA's Byelaw Review process, D&S IFCA will be reviewing all byelaws relating to hand working (including bait digging). Options for management will include, no action, voluntary measures and the potential introduction of a Hand Working

efficiency of sandpipers was significantly lower	Byelaw, which would
in areas targeted for bait digging of bloodworms.	allow the IFCA to
Foraging efficiency decreased by 68.5%. This	monitor levels of this
species of bait is not a prey item for the	activity in the future and
sandpiper but the process of bait digging	adapt to changes in
resulted in a 38% decrease in density of their	effort/ environmental
amphipod prey, Corophium volutator, after one	conditions if necessary, or if the WRZs are
year of baitworm harvesting in the Bay of Fundy.	found to be inadequate
This decrease was as a result of direct mortality	mitigation.
and lower juvenile recruitment. It was also	miligation.
observed that sandpipers on dug regions took	
longer to build up fat deposits needed for	
migration.	
As well as impacting habitats and prey species	
used by birds, the birds themselves can be	
impacted by bait digging activities by way of	
disturbance. Goss-Custard and Verboven (1993)	
found that the presence of people in areas used	
for feeding and breeding can alter the behaviour	
and distribution of estuarine birds. Meaning the	
birds may become displaced into areas with a	
lower prey density. A disturbance review by the	
Exe Estuary Management Partnership (2016)	
summarised that disturbance levels can be	
dictated by a number of factors such as noise	
level, amount of activity and number of people	
present. However, disturbance by bait collection	
generally occurs via visual (seeing the collector	
and responding as if they were a potential	
predator) and/or noise disturbance (causing	
distress via deviation from the "natural" ambient	
noise). Liley et al. (2011) found that whilst bait-	
digging and crab-tiling accounted for 7% of bird	
disturbance events in their study on the Exe	
Estuary, this was just a count of number of	

· · · · · · · · · · · · · · · · · · ·		
	events, and bait-digging actually accounted for	
	16% of all major flight events.	
	Liley et al. (2012) carried out observational	
	surveys in Poole Harbour, recording activities	
	which resulted in bird disturbance. For 93% of	
	observations there was no response from birds,	
	only 1% resulted in major flights. 1558 potential	
	disturbance events were recorded over 63 hours	
	of survey. During the 63 hours of surveillance	
	there were just five individual disturbance events	
	involving bait collection, none resulted in the	
	birds being flushed.	
	Townshend and O'Connor (1993) found that	
	disturbance caused by bait digging activity	
	greatly reduced the extent of use of the	
	Lindisfarne National Nature Reserve (NNR) by	
	wigeon, bar-tailed godwit and redshank.	
	However, significant increases in the	
	populations of wildfowl were recorded in the	
	year following a ban on bait digging.	
	Urfi et al. (1996) looked at how oystercatchers	
	compensate for lost feeding time following	
	disturbance. They expected to find that feeding	
	rates would increase, however, instead they found that feeding time was extended. They also	
	found that birds are able to habituate to the	
	frequent presence of people within feeding	
	areas, reducing the distance at which they take	
	flight, therefore reducing the amount of feeding	
	time lost. Goss-Custard and Verboven (1993)	
	also found that oystercatchers subjected to	
	minimal disturbance conditions have been	
	known to habituate to the presence of people,	
	depending on the movement of the individuals.	

However, De Boer and Langamane (1996) found that larger birds have longer Minimal Approach Distances (MADs) when influenced by human presence and their foraging activity decreases earlier when approached.	
Hockin et al. (1992), shows disturbance can have an effect on breeding success through several factors e.g. nest abandonment, increased mortality of eggs due to predation & increased mortality of young through reduced feeding. Disturbance can reduce use of sites by birds, and can affect nest site choice, having a negative effect on population density. It can also have a negative effect on energy budgets – time spent flying, reduces time spent feeding.	
Over the last five years the only feature bird species to show a decline on the Exe Estuary are the Avocet (-23%), Dunlin (-4%) and Grey plover (-37%), all others have increasing population numbers. Both Dunlin and Grey plover are declining nationally; therefore Avocet is the only species not following the national trend (Frost et al., 2017).	

7. Conclusion

Bait digging occurs at a relatively low intensity on the western shore of the Exe Estuary SPA, and in a localised area on the eastern shore. Although bait digging can cause changes in sediment characteristics, these are much reduced if the holes are backfilled.

Bait diggers are usually solitary, working only at low tide (usually on spring tides) for a couple of hours around the time of low water. Disturbance is only from the presence of bait diggers during this time. This disturbance may result in a temporary change in distribution and abundance of birds in vicinity of the bait digging activity. It is hoped that the newly introduced Wildlife Refuge Zones on the Exe Estuary will mitigate against disturbance caused by recreational activities, including bait digging. The effectiveness of these zones will require ongoing monitoring by the Habitat Mitigation Officers.

Through the IFCA's Byelaw Review process, D&S IFCA will be reviewing all byelaws relating to hand working (including bait digging). Options for management will include, no action, voluntary measures and the potential introduction of a Hand Working Byelaw, which would allow the IFCA to monitor levels of this activity in the future and adapt to changes in effort/ environmental conditions if necessary. If D&S IFCA decides that regulation, other than voluntary measures that are already in place, should be introduced by way of a Hand working Byelaw, it might consider including the requirement for bait diggers to backfill holes/trenches.

8. In-combination assessment

Bait digging occurs alongside other fishing activities within the Exe Estuary SPA (Gray, 2015). Other fishing activities, occurring on this site, which may interact with the intertidal sediments are the elevator harvester, intertidal handwork and crab tiling. The elevator harvester fishery has already undergone an HRA, which concluded it was not likely to have a significant effect in combination with other plans or projects. The low levels of intertidal handwork mean that there is no likelihood of significant adverse effect to the features considered in this assessment incombination with bait digging.

Crab tiling has already undergone an HRA and was found to not be having a significant effect on its own. However, there is potential that crab tiling and bait digging may be having a significant effect when considered in combination. There is no physical overlap between the two activities, although they do occur in close proximity to each other. Therefore, it is unlikely that they will be having a combined effect on the sediment characteristics or infaunal communities. Bird disturbance is a major concern, however it is hoped the Wildlife Refuge Zones will mitigate against this. This will require long-term monitoring.

The impact of future plans or projects will require assessment in their own right, including accounting for any in-combination effects, alongside existing activities.

9. Summary of consultation with Natural England

N/A Natural England have not been consulted at this stage.

10. Integrity test

It can be concluded that bait digging, alone or in-combination, within the Exe Estuary SPA has the potential to effect bird features and their supporting habitats assessed and that the conservation objects may not be met. Management measures are not currently in place, however, Devon and Severn IFCA is reviewing management measures that cover hand working activities (including bait digging). This may provide the opportunity to introduce a requirement to backfill holes/trenches to reduce the impact on the intertidal sediment. D&S IFCA should stay informed of the results of the monitoring of the Wildlife Refuge Zones going forward.

Annex 1: Reference list

Anderson, F.E. and Meyer, L.M. (1986) The interaction of tidal currents on a disturbed intertidal bottom with a resulting change in particulate matter quantity, texture and food quality. Estuarine, Coastal and Shelf Science 22: 19-29.

Beukema J.J. (1995). Long-term effects of mechanical harvesting of lugworms *Arenicola marina* on the zoobenthic community of a tidal flat in the Wadden Sea. Netherlands Journal of Sea Research. 33: 2019-227

Blake R.W. (1979) Exploitation of a natural population of *Arenicola marina* (L.) from the north east coast of England. Journal of Applied Ecology 16: 663-670.

Carvalho, S., Constantino, R., Cerqueria, M., Pereira, F., Subida, M., Drake, P. and Gaspar, M (2013). Short term impact of bait digging on intertidal microbenthic assemblages of two south Iberian Atlantic systems. Estuarine, Coastal and Shelf Science. 132 pp65-75.

Cryer, M., Whittle, G.N. & Williams, R. (1987) The impact of bait collection by anglers on marine intertidal invertebrates. Biological Conservation. 42: 83-93.

De Boer W.F. and Longamane F.A. (1996) The exploitation of intertidal food resources in Inhaca Bay, Mozambique, by shorebirds and humans. Biological Conservation. 78: 295-303

EEMP (2014) Exe Estuary Management Partnership: Exe Estuary Recreational Framework 2014

EEMP (2016) Bait Collection Disturbance Literature Review 2016 – Exe Estuary EMS Case Study.

EEMP (2018) Exe Estuary Management Partnership and South Devon Habitat Regulations Partnership. Exe Bait Collectors Code: A guide for crab collecting and bait digging on the Exe Estuary.

English Nature (2001) EXE ESTUARY: European marine site. English Nature's advice given under Regulation 33(2) of the Conservation (Natural Habitats &c.) Regulations 1994

Evans, S., Moon, J., Bunker, A.R. and Green. M. 2015. Impacts of Bait Digging on the Gann: An Evidence Review. NRW Evidence Report No: 81 34pp, NRW, Bangor.

Fowler, S.L. (1999). Guidelines for managing the collection of bait and other shoreline animals within UK European marine sites. UK Marine SAC project.

Frost, T. M., Austin, G. E., Calbrade, N. A., Mellan, H. J., Hearn, R. D., Stroud, D. A., Wotton, S. R., & Balmer, D. E. (2017) Waterbirds in the UK 2016/17: The Wetland Bird Survey *BTO*, *RSPB* and *JNCC*, in association with WWT. British Trust for Ornithology, Thetford. https://www.bto.org/volunteer-surveys/webs/publications/webs-annual-report/waterbirds-in-the-uk

Goss-Custard J.D., Warwick R.M., Kirby R., McGrorty, S., Clarke, R.T., Pearson, B., Rispin, W.E., Durell, S.E.A. le V. dit & Rose, R.J. (1991). Towards predicting wading bird densities from predicted prey densities in a post-barrage Severn estuary. Journal of Applied Ecology 28:1004-1026.

Goss-Custard J. and Verboven N. (1993). Disturbance and feeding shorebirds on the Exe estuary. Wader Study Group Bulletin. 68: 59-66.

Gray (2015) Devon & Severn IFCA Report: Fishing Activities Currently Occurring in the Exe Estuary SPA

Heiligenberg, T. van den. (1987). Effects of mechanical and manual harvesting of lugworms Arenicola marina L. on the benthic fauna of tidal flats in the Dutch Wadden Sea. Biological Conservation. 39: 165-177.

Hockin, D., Ounsted, M., Gorman, M., Hill, D., Keller, V., & Barker, M. A. (1992) Examination of the effects of disturbance on birds with reference to its importance in ecological assessments. Journal of Environmental Management. 36: 253-286

Jackson, J. and James, R. (1979). The influence of bait digging on cockle, *Cerastoderma edule,* populations in North Norfolk. Journal of Applied Ecology. 16: 671-679.

Johnson, G. (1984) Bait collection in a proposed marine nature reserve, MSc Report, Ecology and Conservation Unit, University College London in http://www.ukmarinesac.org.uk/activities/bait-collection/, accessed February 2019.

Liley D., Cruickshanks K., Waldon J., Fearnley H. (2011). Exe Estuary Disturbance Study. Footprint Ecology Ltd., Wareham, Dorset.

Liley D. and Fearnley H. (2012) Poole Harbour Disturbance Study, Report for Natural England, Footprint Ecology Ltd, Dorset, p.75

Liley, D., Cruickshanks, K, Fearnley, H. & Lake, S. (2012) The effect of bait collection on waterfowl foraging behaviour in Holes Bay, Poole Harbour. Report for Natural England. Footprint Ecology Ltd., Wareham, Dorset.

Natural England (2015) Marine conservation advice for Special Protection Area: Exe Estuary (UK9010081)

Olive P.J.W. (1993) Management of the exploitation of the lugworm Arenicola marina and the ragworm Nereis virens (Polychaeta) in conservation areas. Aquatic Conservation: Marine and Freshwater Ecosystems 3: 1-24

SEDHRP (2019) http://www.southeastdevonwildlife.org.uk/exe-estuary/

Shepherd, P.C.F. and Boates, S.J. (1999). Effects of a commercial baitworm harvest on Semipalmated Sandpipers and their prey in the Bay of Fundy hemispheric shorebird reserve. Conservation Biology. 13: 347-356.

Stephenson (2019) Devon & Severn IFCA Report: Bait Digging in the Exe Estuary European Marine Site. Data Analysis Report.

Townshend, D.J. & O'Connor, D.A. (1993) Some Effects of Disturbance to Waterfowl from Bait Digging and Wildfowling at Lindisfarne National Nature Reserve, North-east England. Wader Study Group Bulletin. 68: 47–52.

Watson G.J., Murray J.M., Schaefer M., Bonner A. and M. Gillingham (2017) Assessing the impacts of bait collection on inter-tidal sediment and the associated macrofaunal and bird communities: The importance of spatial scales, Marine Environmental Research 130: 122-133

Urfi A.J., Goss-Custard J., Lev S. & Durell D. (1996) The ability of oystercatchers Haematopus otralegus to compensate for lost feeding time: field studies on individually marked birds. Journal of Applied Ecology 33(4) 873-883.

Zwarts, L. and Wanink, J. (1993). How the food supply harvestable by waders in the Wadden Sea depends on the variation in energy density, body weight, biomass, burying depth and behaviour of tidal-flat invertebrates. Netherlands Journal of Sea Research, 31(4), pp.441-476.

Annex 2: Natural England's consultation advice N/A Natural England have not been consulted at this stage.

Annex 3: Site Maps

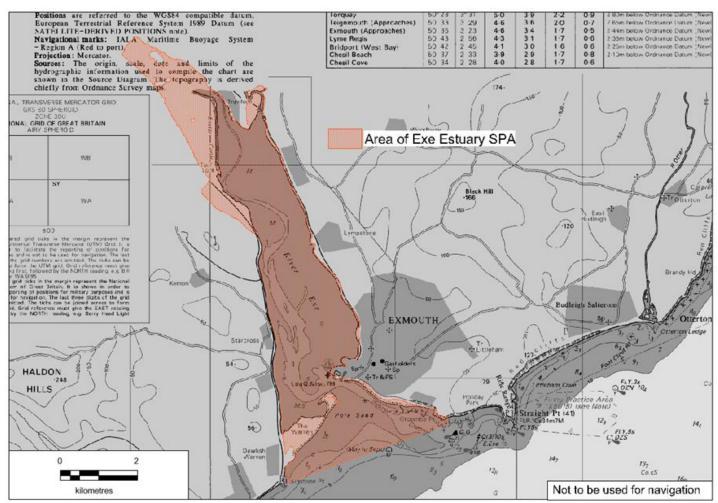


Figure 1 Exe Estuary SPA boundary (shown in red)

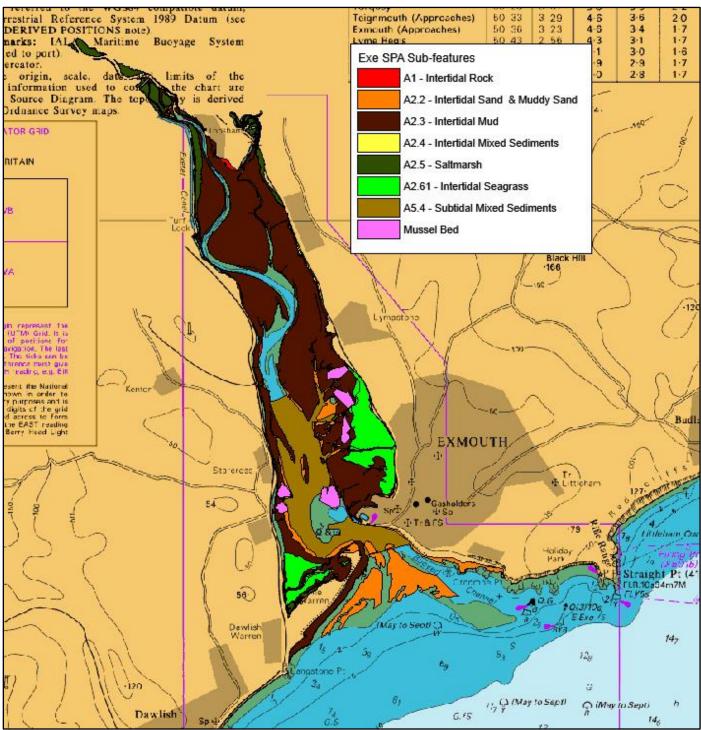


Figure 2 Exe Estuary SPA sub-features (Natural England, 2015)

Annex 4: Fishing activity maps

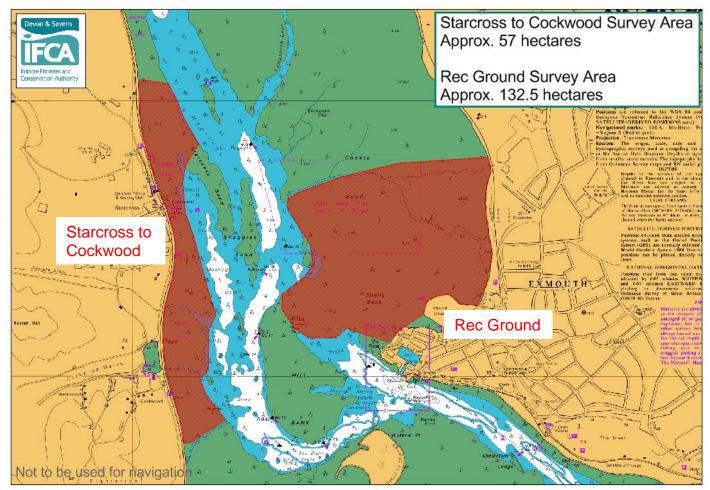
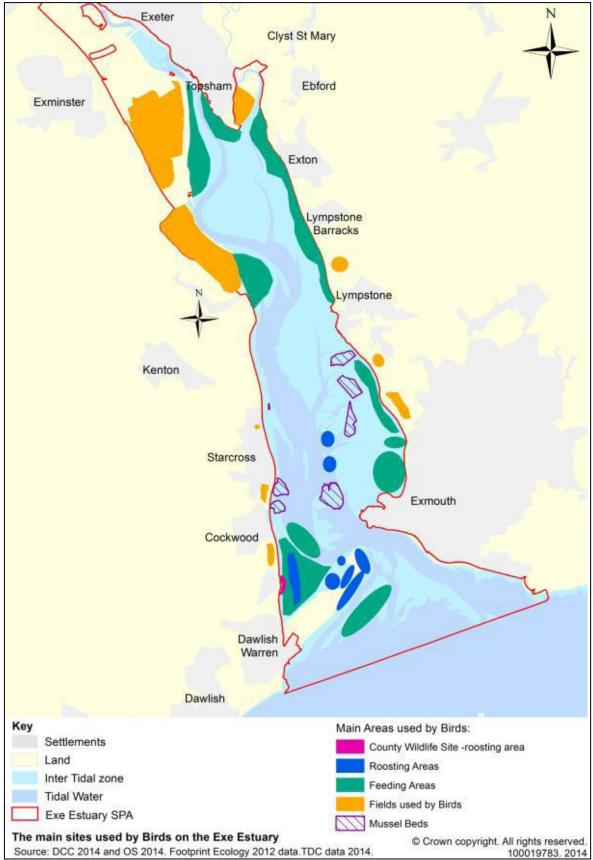
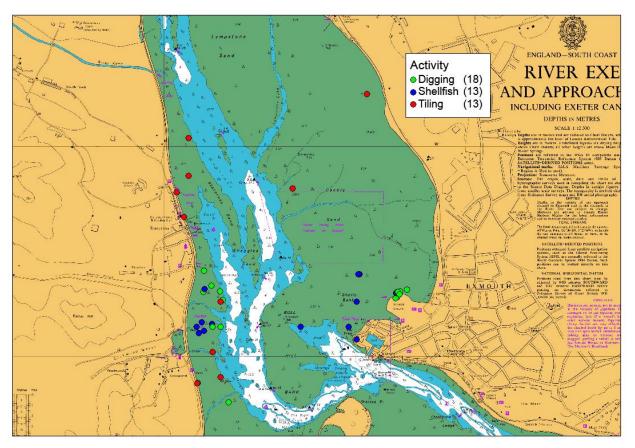
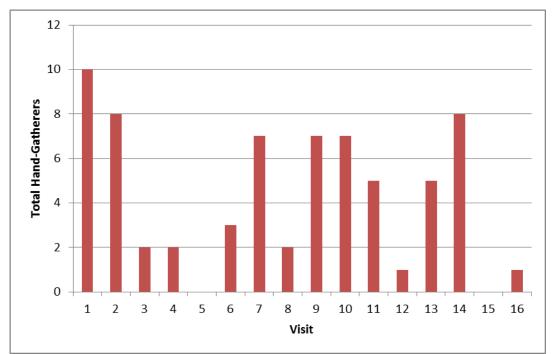
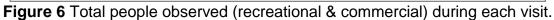


Figure 3 Areas covered by D&S IFCA bait digging surveys, where bait digging effort was observed (Stephenson, 2019)

Annex 5: Bird usage of the Exe Estuary


Figure 4 Main sites used by birds on the Exe Estuary (EEMP, 2014)

Annex 6: Summary of Results of the D&S IFCA Intertidal Handwork Survey

Figure 5 Total people observed (recreational & commercial) working in the intertidal area, shown by activity; bait digging, shellfish collection, and crab tiling.

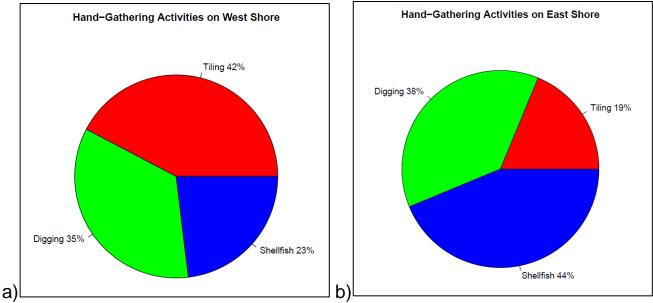
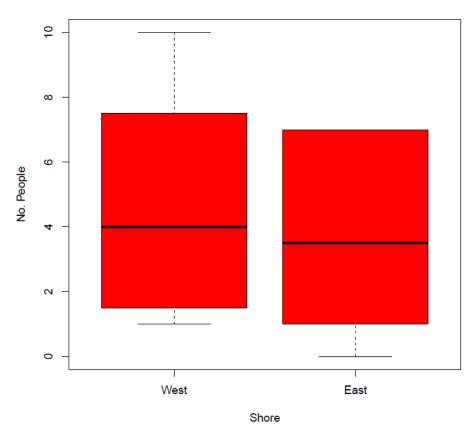



Figure 7 Proportions of each activity on the West Shore (a) and East Shore (b)

Hand-Gatherers per Visit

Figure 8 Numbers of people working on each shore per visit

Hand-Gatherers per Visit

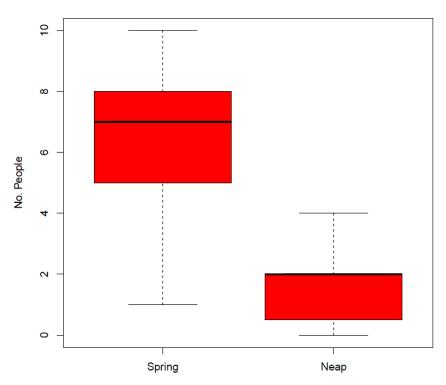
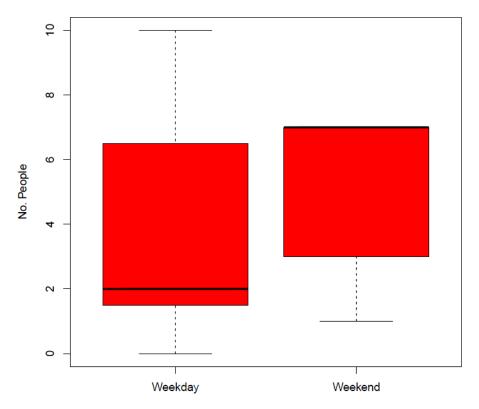
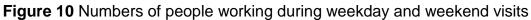




Figure 9 Numbers of people working during spring and neap tide visits

Hand-Gatherers per Visit

Annex 7: Pressures Audit Trail

Sensitivities based on Conservation Advice (Natural England, 2015)

Shore-based	Feature/Sub-feature & Screen Justification				
activities	Bird Feature	Intertidal Coarse Sediment	Intertidal Mixed Sediments	Intertidal Mud	Intertidal Sand & Muddy Sand
Above water noise	Sensitivity: S IN - Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure				
Abrasion/disturbance of the substrate on the surface of the seabed		Sensitivity: NS	Sensitivity: S IN - Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure.	Sensitivity: S IN - Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure.	Sensitivity: S IN - Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure.
Collision BELOW water with static or moving objects not naturally found in the marine environment	Sensitivity: S OUT - This interaction was only sensitive for Slavonian grebe with shore-based activities, so is considered extremely low risk.				
Deoxygenation		Sensitivity: NS	Sensitivity: NS	Sensitivity: NS	Sensitivity: NS
Genetic modification & translocation of indigenous species					Sensitivity: IE OUT - Insufficient activity levels within proximity to this habitat to pose risk.

Hydrocarbon & PAH contamination. Includes those priority substances listed in Annex II of Directive 2008/105/EC.	Sensitivity: IE OUT - Insufficient activity levels to pose risk of large scale pollution event	Sensitivity: NS	Sensitivity: NS	Sensitivity: NS	Sensitivity: NS
Introduction of light	Sensitivity: S OUT - Insufficient activity levels within proximity to this habitat to pose risk.				
Litter	Sensitivity: IE (S for Slavonian grebe) OUT – Low risk of litter from bait digging activities.	Sensitivity: IE OUT – Low risk of litter from bait digging activities.	Sensitivity: IE OUT – Low risk of litter from bait digging activities.	Sensitivity: IE OUT – Low risk of litter from bait digging activities.	Sensitivity: IE OUT – Low risk of litter from bait digging activities.
Penetration/disturban ce of the substrate below the surface of the seabed, including abrasion		Sensitivity: NS	Sensitivity: S IN - Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure.	Sensitivity: S IN - Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure.	Sensitivity: S IN - Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure.
Physical changes (to another seabed type)		Sensitivity: S IN - Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure.	Sensitivity: S IN - Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure.	Sensitivity: S IN - Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure.	Sensitivity: S IN - Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure.
Removal of non- target species	Sensitivity: S IN – Mortality of prey from trampling.				Sensitivity: S IN – Mortality of prey from trampling.
Removal of target species			Sensitivity: S IN - Removal of target species associated with fishing activity.	Sensitivity: S IN - Removal of target species associated with fishing activity.	Sensitivity: S IN - Removal of target species associated with fishing activity.
Visual disturbance	Sensitivity: S IN - Need to consider spatial scale/intensity of				

activity to determine		
likely magnitude of		
pressure		