

Fisheries in EMS Habitats Regulations Assessment for Amber and Green risk categories

European Marine Site: Severn Estuary SPA

Fishing activities assessed: Bait collection

Gear/feature interactions assessed:

D&S IFCA Interaction ID	Fishing Activity	Features(s)
HRA_UK9015022_AV40		Bewicks Swan; European White-
		Fronted Goose; Dunlin;
	Digging with forks	Redshank; Shelduck; Gadwall
HRA_UK9015022_AO40		Internationally Important
		Assemblage of Waterfowl

Contents

1. Introduction	3
1.1 Need for an HRA assessment	3
1.2 Documents reviewed to inform this assessment	
2. Information about the EMS	4
2.1 Overview and qualifying features	4
2.2 Conservation Objectives	4
3. Interest feature(s) of the EMS categorised as 'red' risk and overview of management	
measure(s)	5
5. Test for Likely Significant Effect (LSE)	6
5.1 Table 1: Assessment of LSE	6
6. Appropriate Assessment	7
6.1 Potential risks to features	7
7. Conclusion	23
8. In-combination assessment	23
9. Summary of consultation with Natural England	
10. Integrity test	
Annex 1: Reference list	
Annex 2: Natural England's consultation advice	
Annex 3: Site Map	
Annex 4: Fishing activity maps	
Annex 5: Pressures Audit Trail	

1. Introduction

1.1 Need for an HRA assessment

In 2012, the Department for Environment, Food and Rural Affairs (Defra) announced a revised approach to the management of commercial fisheries in European Marine Sites (EMS). The objective of this revised approach is to ensure that all existing and potential commercial fishing activities are managed in accordance with Article 6 of the Habitats Directive.

This approach is being implemented using an evidence based, risk-prioritised, and phased basis. Risk prioritisation is informed by using a matrix of the generic sensitivity of the sub-features of EMS to a suite of fishing activities as a decision making tool. These sub-feature-activity combinations have been categorised according to specific definitions, as red, amber, green or blue.

Activity/feature interactions identified within the matrix as red risk have the highest priority for implementation of management measures by the end of 2013 in order to avoid the deterioration of Annex I features in line with obligations under Article 6(2) of the Habitats Directive.

Activity/feature interactions identified within the matrix as amber risk require a site-level assessment to determine whether management of an activity is required to conserve site features. Activity/feature interactions identified within the matrix as green also require a site level assessment if there are "in combination effects" with other plans or projects.

Site level assessments are being carried out in a manner that is consistent with the provisions of Article 6(3) of the Habitats Directive. The aim of this assessment is to determine whether management measures are required in order to ensure that fishing activity or activities will have no adverse effect on the integrity of the site. If measures are required, the revised approach requires these to be implemented by 2016.

The purpose of this site specific assessment document is to assess whether or not in the view of Devon and Severn Inshore Fisheries and Conservation Authority (D&S IFCA) the current level of effort of use of digging with forks has a likely significant effect on the interest features of the Severn Estuary SAC, and on the basis of this assessment whether or not it can be concluded that the current levels of activity relating to digging with forks will not have an adverse effect on the integrity of this EMS.

1.2 Documents reviewed to inform this assessment

- Natural England's risk assessment Matrix of fishing activities and European habitat features and protected species¹
- Reference list (Annex 1)
- Natural England's consultation advice (Annex 2)
- Site map(s) sub-feature/feature location and extent (Annex 3)
- Fishing activity data (map(s), etc.) (Annex 4)

¹ See Fisheries in EMS matrix:

http://www.marinemanagement.org.uk/protecting/conservation/documents/ems_fisheries/populated_matrix3.xls

2. Information about the EMS

The Severn Estuary is the largest coastal plain estuary in the United Kingdom and one of the largest estuaries in Europe. It has the second largest tidal range in the world and the tidal regime determines not only the structure of the estuary and individual habitats but also the conditions affecting it and the biological communities it therefore supports (Natural England and CCW, 2009). The Severn Estuary EMS includes both SAC and SPA designations which differ slightly in area although broadly overlap.

The Severn Estuary SAC includes the entire extent of the tidal influence from an upstream boundary between Frampton and Awre in Gloucestershire out seawards to a line drawn between Penarth Head in Wales and a location just west of Hinkley point in Somerset (Natural England and CCW, 2009). It includes subtidal and intertidal areas landward to the line of high ground and flood defences (banks and walls) that provide the limit of tidal inundation. The overall area of the European conservation designations is 73,715.4 ha of which roughly two thirds is composed of subtidal habitats and one third is composed of intertidal habitats. The Estuary is an over-arching feature of the EMS which incorporates all aspects of the physical, chemical and biological attributes of the estuary as an ecosystem (Natural England and CCW, 2009).

The estuary lies in the Severn Vale which includes the cities of Cardiff, Bristol, Newport and Gloucester, supporting a number of large-scale industries which exploit the estuaries natural resources.

2.1 Overview and qualifying features

Severn Estuary qualifies as a SPA under the EU Birds Directive for (Natural England, 2015):

- Annex I species
 - Bewick's swan (Cygnus columbianus)
 - Regularly occurring migratory species
 - Greater white-fronted goose (Anser albifrons albifrons)
 - Dunlin (Calidris alpina alpina)
 - Redshank (Tringa totanus)
 - Shelduck (Tadorna tadorna)
 - Gadwell (Anas strepera)
- Internationally important assemblage >20,000 waterfowl, includes above species plus the following; Spotted redshank, Curlew, Whimbrel, Grey plover, Ringed plover, Tufted duck, Pochard, Pintail, Teal, Wigeon, Lapwing, Mallard and Shoveler (Natural England and CCW, 2009)
- Supporting habitats
 - Atlantic salt meadows (Glauco-Puccinellietalia maritimae)
 - Coastal reedbeds
 - Freshwater and coastal grazing marsh
 - o Intertidal mixed sediment
 - o Intertidal mud
 - o Intertidal rock
 - o Intertidal sand and muddy sand
 - o Intertidal seagrass beds
 - Subtidal seagrass beds

2.2 Conservation Objectives

The site's conservation objectives apply to the Special Protection Area and the individual species and/or assemblage of species for which the site has been classified.

The objectives are to ensure that, subject to natural change, the integrity of the site is maintained or restored as appropriate, and that the site contributes to achieving the aims of the Wild Birds Directive, by maintaining or restoring:

- the extent and distribution of the habitats of the qualifying features
- the structure and function of the habitats of the qualifying features
- the supporting processes on which the habitats of the qualifying features rely
- the populations of the qualifying features
- the distribution of the qualifying features within the site

3. Interest feature(s) of the EMS categorised as 'red' risk and overview of management measure(s)

The following features and sub-features of the Severn Estuary Severn Estuary SAC have been identified as high risk in relation to towed gear through the application of the Natural England risk matrix:

- 1130 Estuaries (SAC feature)
 - High-risk sub-feature: Sabellaria spp. reef
 - High-risk sub-feature: Seagrass
 - 1170 Reefs (SAC feature)
 - High-risk sub-feature: Sabellaria spp.

Management has been implemented to protect the *Sabellaria*. The D&S IFCA Mobile Fishing Permit Byelaw prevents the use of towed gear throughout the whole of the portion of the Severn Estuary which sits within the Devon and Severn IFCA district. The document 'Site Specific Assessment for Red High Risk Categories' (D&S IFCA 2013) covers these actions. Seagrass only occurs in the Welsh portion of the district, so has been screened out of the D&S IFCA HRA process.

4. Information about the fishing activities within the site

D&S IFCA has carried out a detailed review of the fishing activities taking place within the Severn Estuary EMS (Ross, 2015). D&S IFCA carried out bait digging surveys between 2012 and 2015 and IFCA and a further report specifically focussed on bait digging activity has been produced (West, 2019).

Most of the bait digging effort is focused on sandy and muddy shorelines for *Arenicola marina*. *Allita virens* tends to be targeted in areas of sediment in areas of pebbles or stones. Bait digging effort at Hinkley Point, the only site surveyed where these more mixed sediments are targeted, appears to be much lower than at the sites where lugworms are targeted. D&S IFCA has not observed any sites where bait digging either occurs on or directly adjacent to *Sabellaria* or where trampling of *Sabellaria* occurs whilst accessing bait digging areas. Furthermore, the Association of Severn Estuary Relevant Authorities (ASERA), in partnership with D&S IFCA, has produced a code of conduct which specifically requests bait diggers to avoid areas of *Sabellaria* reef and saltmarsh which is actively promoted by all ASERA members, including D&S IFCA.

5. Test for Likely Significant Effect (LSE) 5.1 Table 1: Assessment of LSE

1. Is the activity/activities directly connected with or necessary to the management of the site for nature conservation?	No		
2. What pressures (such as abrasion, disturbance) are potentially exerted by the gear type(s)	 Bird feature(s): Above water noise Removal of non-target species Visual disturbance See Annex 5 for pressures audit trail		
3. Is the feature potentially exposed to the pressure(s)?	Yes, there are no current management measures in place so theoretically an interaction could occur.		
4. What are the potential effects/impacts of the pressure(s) on the feature, taking into account the exposure level?	Direct effects of bait digging can reduce the abundance of target bait species (such as lugworm and ragworm) and change the abundance, structure and diversity macrofaunal communities. Additionally, bait diggers can disturb birds which can impact on breeding success through several factors e.g. nest abandonment, increased mortality of eggs due to predation and		
5. Is the potential scale or magnitude of any effect likely to be significant?	Alone	Unsure, there is potential for likely significant effect. Therefore, an appropriate assessment has been carried out.	
	In- combination	See section 8 for more information	
6. Have NE been consulted on this LSE test? If yes, what was NE's advice?	No, not at this s	stage.	

6. Appropriate Assessment

An Appropriate Assessment is not required as the TLSE concluded that this activity would not have a significant effect, either alone or incombination.

6.1 Potential risks to features

Table 2: Summary of Impacts

Feature/Sub feature(s)	Conservation Objective	Potential pressure (such as abrasion, disturbance) exerted by gear type(s)	Potential ecological impacts of pressure exerted by the activity/activities on the feature (reference to conservation objectives)	Level of exposure of feature to pressure	Mitigation measures
Annex I species: - Bewick's swan Regularly occurring migratory species: - Greater white-fronted goose - Dunlin - Redshank - Shelduck - Gadwall Internationally	The populations of the qualifying features: Maintain the 5 year peak mean population size for the - Bewick's swan population is no less than 289 individuals - Wintering European white fronted goose population is no less than 3,002 individuals - Wintering dunlin population is no less than 41,683 individuals - Wintering redshank	Removal of non-target species	Both blow lugworm (<i>Arenicola marina</i>) and, to a lesser extent, king ragworm (<i>Alitta virens</i>) are targeted by bait diggers on the Severn Estuary. Contrasting evidence exists as to the <i>direct</i> environmental effects of bait digging for lugworm. Relative to other exploited intertidal invertebrates, blow lugworms are relatively resilient to exploitation and disturbance because of their relative fecundity and widespread distribution (Fowler, 1999). In addition, <i>A. marina</i> exhibit a marked annual cycle in the numbers and condition of individuals, so that any changes in population structure correlated to bait	 A detailed review of bait digging activity in the Severn Estuary has been undertaken by D&S IFCA (West 2019). Key findings are as follows: The majority of digging effort is for lugworm on the sandy beaches at Burnham on Sea, Berrow, Brean, Weston- Super-Mare and Sand Bay with more localised targeting of ragworm in some locations. Bait digging effort is greatest in Autumn and Winter, thought to be due to the popularity of ace applied for 	D&S IFCA worked with the Association of Severn Estuary Authorities (ASERA) to produce a bait digging code of conduct, published after the survey work discussed in this report took place. The code promotes back-filing of holes, encourages anglers to avoid saltmarsh and Sabellaria and to only take as much

assemblage of	than 2,013 individuals	digging, would have to control for these		whiting and cod at this time	also informs anglers
waterfowl	- Wintering shelduck	factors (Olive, 1993). Removal rates of		of year.	that ragworm may
	population is no less	50-70% of worms in the area dug have	-	Bait digging effort was	be more sensitive to
	than 2,892 individuals	been reported in the literature		relatively low with mean	exploitation in the
	- Wintering gadwall	(Heilgenberg 1987, Blake 1979) but		values of bait diggers per	Severn, and to
	population is no less	D&S IFCA observations suggest this		hour between 0.2-0.8 per	restrict their take of
	than 330	may be much lower in some areas,		hour and median values for	these species, and
	-Waterfowl assemblage	especially where large areas of		the number of holes	to consider
	is no less than 68,026	lugworm exist and holes are relatively		observed on a survey being	purchasing farmed
	individuals	well spread out.		close to 0.	ragworm. Little
	(ie the 5 year peak mean	A wide renge of responses by A	-	The maximum number of bait	commercial bait
	between 1988/9-1992/3)	A wide range of responses by A.		diggers observed ranged	collection takes
	The distribution of the	manna to exploitation of experimental		between 2 and 4 diggers per	place, but where it
	qualifying features within	simulations of exploitation have been		survey depending on the site	has been suspected
	the site:	round, relating to local environmental		and year	to occur the
	Maintain aggregations of	distribution of boit diaging activity. Olive	-	There was some inter-annual	individuals involved
	the	(1002) describes the cooperio which led		variation in angling effort,	did dig significantly
	- Bewick's swan	(1995) describes the scenario which ied		possibly relating to the	more frequently and
	- European white-			strength of the cod run	for greater quantities
	fronted goose	Reserve in Northumberland in 1094	-	Bait digging was spatially	of worm than the
	- Dunlin	Reserve in Northumberland in 1964,		limited at some sites	average recreational
	- Redshank	with densities failing from >40m ⁻¹ to 10^{-2} When the site was closed to beit		depending on access points	angler. Through the
	- Shelduck	< IIII When the site was closed to ball		and the areas dug tend to be	IFCA's Byelaw
	- Gadwall	algoing it repopulated within a matter of		very small in relation to the	Review process,
	- Waterfowl	avtensive nen explaited percelletions		size of the intertidal mudflats	D&S IFCA will be
	aggregations at feeding,	poarby Similarly lugworm populations	-	The areas dug for worm	reviewing all
	roosting and refuge sites	in the Dutch Wedden See appear to be		tended to be very small in	byelaws relating to
	are not subject to	In the Dutch Wadden Sea appear to be		comparison to the overall	hand working
	significant disturbance.	avalation with an actimated 2 x 10 ⁷		available habitat	(including bait
		individuals take appually. However	-	Digging primarily occurred	digging). Options for
	The populations of the	Criver et al. (1987) found no receiver, in		around low tide although it	management will
	qualifying features:	worm densities after 6 months following		was generally middle to	include, no action,
	Maintain the 5 year peak	avparimental removal although natural		upper shore areas which	voluntary measures
	mean population size for	densition at the test site in South Wales		were dug due to the distance	and the
	the:	were low (0.16 m^{-2}) and the survey rep		to walk out to low tide, the	potential introduction
	- Bewick's swan	through the loss productive winter		prevalence of muddy habitat	of a Hand Working
	population is no less	monthe. The consoity of a population to		in many areas and the	Byelaw, which would
	than 289 individuals	monuns. The capacity of a population to		danger involved in walking	allow the IFCA to
	- Wintering			out on the mudflats	monitor levels of this

 goose population is no less than 3,002 individuals Wintering dunlin population is no less than 41,683 individuals Wintering redshank population is no less than 2,013 individuals Wintering shelduck population is no less than 2,892 individuals Wintering gadwall population is no less than 330 Waterfowl assemblage is no less than 68,026 individuals (ie the 5 year peak mean between 1988/9-1992/3) 	including the size of the exploited area relative to the total lugworm beds nearby, the presence of nursery areas, the relative exploitation of adult and juvenile lugwprms, and the intensity and seasonality of bait digging. However, on the whole they are thought to be resilient to bait digging. King ragworm, <i>Alitta virens</i> , is a keystone intertidal species as prey for fish, birds and crustaceans, is a predator of other invertebrates and has an important role in bioturbation of the sediment (Watson et al. 2017a). King ragworm are generally found in more sheltered sediment areas but they can also be found in more mixed sediments (E West, Pers. Obs.). Differing reports exist of the life-history and population characteristics of <i>A.virens</i> . Whilst early studies of North American populations suggested a mean age at breeding of >3 years with the population dominated by 0-group individuals, a population from the Menai Straight, Wales was thought to mature later, and to have very few 0-group individual present. The latter population was therefore seen as being vulnerable to exploitation. On the North East coast of England, a study found similar densities (~15m ² during the summer, ~3m ² during the winter) of <i>A. virens</i> in both exploited and unexploited populations Blake (1979), suggesting that at least some populations are unaffected by bait	has occurred in the past and IFCA officers did observe two individuals who were thought to be digging commercially. These diggers dug considerably more often and for more lugworm compared to recreational diggers. - Anglers did not backfill holes This effort is significantly lower than that reported by Watson et al. in 2017b in the Solent. The study recorded an average of 3.14 collectors per tide and a mean collection rate per person per hour of 228 worms from direct measurements taken across three locations within the Solent European Marine Site (SEMS). Using a mean weight of A.virens collected by a commercial collector of 6.11g. In a separate report, D&S IFCA undertook extensive survey work to look at lugworm density in the Severn (Ross 2013). The report found that lugworm density and population structure (adults: juveniles) varied spatially between Burnham-On-Sea and Sand Bay, probably due to sediment characteristics and the sedimentary regime in the Severn. Distribution and densities were found to be very similar to those reported in a paper in the	and adapt to changes in effort/ environmental conditions if necessary. If the IFCA did introduce formal management this may include the requirement to back fill holes and trenches.

 1			1
	digging. In other cases the change in	1970's. The large area of	
	macrofaunal community has been	intertidal mudflats and abundance	
	thought to benefit <i>A.virens</i> , due to its	of lugworm throughout the Severn	
	opportunistic nature (Evans et al.	suggest populations will be robust	
	2015).	to exploitation.	
	Estuary ragworm is used for bait by		
	some anglers, who generally just report		
	using ragworm which could be A virens		
	or H. diversicolor when fishing		
	(although king ragworm is generally		
	preferred) H diversicolor is widely		
	distributed throughout the North		
	Temperate Zone from both the		
	European and the North American		
	coast of the Atlantic (Scaps 2002). H.		
	<i>diversicolor</i> inhabits sandy muds but		
	also gravels, clavs and even turf (Scaps		
	2002). The species is able to tolerate		
	great variations of temperature and		
	salinity and to survive drastic conditions		
	of hypoxia and is thus able to settle in		
	naturally-fluctuant environments such		
	as the upper waters of estuaries (Scaps		
	2002). Variation in the reproductive		
	biology of this species over short		
	distances has also been reported.		
	Worms monitored near the mouth of the		
	Humber estuary (England), spawning		
	takes place in March; at the upriver end		
	of the Humber; oocytes are spawned in		
	June or July (Grant et al. 1990 in Scaps		
	2002). Individuals live up to 3 years,		
	with maturity occurring somewhere		
	between 1 and 2 years old. H.		
	diversicolor is highly prone to predation		
	by waders and shelducks, crabs,		
	shrimps and small fish. In the Douro		
	estuary it was estimated that 9.9tons of		

H.diversicolor are dug, however the	
total annual biomass collected was	
substantially less than the productivity	
estimated for the entire intertidal area of	
the site. The ability of a variety of age	
classes to swim, burrow and be carried	
by bedload transport is thought to aid	
the rapid recolonization of disturbed	
sediments (Shull 1997). In the Lamar	
Estuary Davey & George (1986), found	
evidence that the larvae of	
H.diversicolor were tidally dispersed	
over a distance of 3 km. This suggests	
that, similar to <i>A.marina</i> , the resilience	
diaging may depend on local population	
digging may depend on local population	
activity	
activity.	
Bait digging can have adverse effects	
on a wide variety of species as a result	
of physical damage, burial, smothering	
and/or exposure to desiccation or	
predation to non-target invertebrates.	
Recovery of small short-lived	
invertebrates will usually occur within a	
year, but populations of larger, long-	
lived invertebrates may take much	
longer (⊢owler, 1999). In some extreme	
cases local diversity may be reduced,	
which may be especially true in	
prysically fragile environments such as	
eeigrass or mussel beds (Fowler,	
1999). Similarly, Beukema (1995) found	
Maddon Soa, the local lugworm stock	
declined by more then double over a	
four-year mechanical diaging period	
a result of this decline, total zoobenthic	

biomass also declined, with short lived species showing a marked reduction during the digging period. Recovery of the benthos took several years. especially by the slower establishing species. However, if disturbance by digging is short term, benthic communities can recover within six months (Beukema, 1995). In a disturbance study in a range of estuarine habitats Dernie et al. (2003) found the total numbers of individuals and species in disturbed treatment areas were reduced significantly immediately post-disturbance and differences were still deservable 15, 35 and 105 days after the simulated disturbances that disturbed treatment areas were reduced significantly immediately post-disturbance and differences were still deservable 15, 35 and 105 days after the simulated disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of intertidal muditas. The fauna of their study area (the tidal mudfats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididee, Arenocolidee</i> (lishing target species) and the <i>Circutidee</i> . They found the number of taxa and abundance of individuals were affected by bait digging, the abundances estimated at the corter statoms before and after bait collection, with some polychaete species disatoms mere and after bait collection, with some	_	
species showing a marked reduction during the digging period. Recovery of the benthos took several years, especieally by the slower establishing species. However, if disturbance by digging is short term, benthic communities can recover within six months (Beukema, 1995). In a disturbance study in a range of estuarine habitats Dentine et al. (2003) found the total numbers of individuals and species in disturbance attudy in a range of estuarine habitats Dentie et al. (2003) found the total numbers of individuals and species in disturbance attudy immediately post-disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunities species into disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauma of intertidal muditas. The fauna of their study area (the tidal muditas of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Neroldidae, Anenicolidae</i> (fishing taget <i>Neroldidae, Anenicolidae</i> (fishing taget <i>Neroldidae</i> , Anenicolidae the there stations before and after bait co		biomass also declined, with short lived
during the digging period. Recovery of the benthos took several years, especially by the slower establishing species, However, if disturbance by digging is short term, benthic communities can recover within six months (Beukema, 1995). In a disturbance study in a range of estuarine habitats Dernie et al. (2003) found the total numbers of individuals and species in disturbed treatment areas were reduced significantly immediately post-disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbed areas at any of the 15 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impactofauna of intertidal muditas. The fauna of their study area (the tidal muditas of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the Noreided, Arrenciolade (fishing target species) and the Ciratu/date. They found the number of individuals were affected by bait digging; the abundanceses		species showing a marked reduction
the bernhos took several years, especies. However, if disturbance by digging is short term, benthic communities can recover within six months (Beukema, 1995). In a disturbance study in a range of estuarine habitats Dernie et al. (2003) found the total numbers of individuals and species in disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbance. There was no indication of an influx of opportunistic species into disturbance. There was no indication of an influx of opportunistic species into disturbance. There was no indication of an influx of opportunistic species into disturbance. There was no indication of an influx of opportunistic species into disturbance. There was no indication of an influx of opportunistic species into disturbance. There was no indication of an influx of opportunistic species into disturbance. There was no indication of an influx of noter study area (the total mudflats of Kneiss Islands. The fauna of t		during the digging period. Recovery of
especially by the slower establishing species. However, if disturbance by digging is short term, benthic communities can recover within six months (Beukema, 1995). In a disturbance study in a range of estuarine habitats Dernie et al. (2003) found the total numbers of individuals and species in disturbed treatment areas were reduced significantly immediately post-disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrotogua of intertidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more advundant families being the <i>Nerekidae, Arenciolae</i> (fishing target species) and the <i>Crinztuldae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		the benthos took several years.
species. However, if disturbance by digging is short term, benthic communities can recover within six months (Beukema, 1995). In a disturbance study in a range of estuarine habitats Dernie et al. (2003) found the total numbers of individuals and species in disturbed treatment areas were reduced significantly immediately post-disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of intertial mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae, Arenocidae</i> . (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances e stimated at the restations before and after bait collection, with some e stimited at the restations before and after bait collection, with some		especially by the slower establishing
digging is short term, benthic communities can recover within six months (Beukema, 1995). In a disturbance study in a range of estuarine habitats Dernie et al. (2003) found the total numbers of individuals and species in disturbed treatment areas were reduced significantly immediately post-disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbad areas at any of the 16 sites (Dernie et al. 2003). Moshali et al. (2015) also explored the impacts of bait digging on the macrofauna of interitial muditats. The fauna of their study area (the tidal muditats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nerretidae, Arenicolidae</i> (fishing target species) and the <i>Curstuliade</i> . They found the number of taxa and abundance of individuals were affected by bait digging the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some		species. However, if disturbance by
bigging is and retrin, shall communities can recover within six months (Beukema, 1995). In a disturbance study in a range of estuarine habitats Dernie et al. (2003) found the total numbers of individuals and species in disturbed treatment areas were reduced significantly immediately post-disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bair digging on the macrofauna of intertidal mudflats. The fauna of their study area (the fishes Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae, Arenicolidae</i> (thisting target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging the abundances estimated at the correat stalows were significantly higher than those estimated at the control stalons were significantly higher than those		digging is short term, benthic
 Continuities can recover within six months (Beukema, 1995). In a disturbance study in a range of estuarine habitats Dernie et al. (2003) found the total numbers of individuals and species in disturbed treatment areas were reduced significantly immediately post-disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbed area at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of intertidal mudilats. The fauna of their study area (the tidal field) the study area (the tidal field). The fauna faund their study area (the tidal field). The		communities can recover within six
In a disturbance study in a range of estuarine habitats Demie et al. (2003) found the total numbers of individuals and species in disturbed treatment areas were reduced significantly immediately post-disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of intertidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae, Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the chrea statons were significantly higher than those estimated at the three statons before and after bait collection, with some polychaete species disappearing after		continuinties carriecover within six
In a disturbance study in a range of estuarine habitats Dernie et al. (2003) found the total numbers of individuals and species in disturbed treatment areas were reduced significantly limmediately post-disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbed areas at any of the 16 sites (Dernie et al. (2015) also explored the impacts of bait digging on the macrofauna of interlial mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae, Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the three stations before and after bait collection, with some polychaete species disappearing after		montris (Beukema, 1995).
estuarine habitats Dernie et al. (2003) found the total numbers of individuals and species in disturbed treatment areas were reduced significantly immediately post-disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of intertidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae, Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the torne stations before and after bait collection, with some polychaete species disappearing after		In a disturbance study in a range of
found the total numbers of individuals' and species in disturbed treatment areas were reduced significantly immediately post-disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbance. There was no indication of an influx of opportunistic species into disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of intertidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae</i> , <i>Arenicoidae</i> (fisting target species) and the <i>Citratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging, the abundances estimated at the cortrol stations were significantly higher than those estimated at the three stations before and after baic colico, with some polychaete species disappearing after		estuarine habitats Dernie et al. (2003)
and species in disturbed treatment areas were reduced significantly immediately post-disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of intertidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae</i> , <i>Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the tree stations before and after bait collection, with some polychaete species disappearing after		found the total numbers of individuals
areas were reduced significantly immediately post-disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of intertidal muditats. The fauna of their study area (the tidal muditats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae</i> , <i>Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were estimated at the control stations were significantly higher than those estimated at the tree stations before and after bait collection, with some polychaete species disappearing after		and species in disturbed treatment
immediately post-disturbance and differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of intertidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae, Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		areas were reduced significantly
differences were still observable 15, 35 and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of interidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae, Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		immediately post-disturbance and
and 105 days after the simulated disturbance. There was no indication of an influx of opportunistic species into disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of intertidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae</i> , <i>Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		differences were still observable 15, 35
disturbance. There was no indication of an influx of opportunistic species into disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of intertidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae</i> , <i>Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		and 105 days after the simulated
an influx of opportunistic species into disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of intertidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae, Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the corrol stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		disturbance. There was no indication of
disturbed areas at any of the 16 sites (Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of interitidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae, Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		an influx of opportunistic species into
(Dernie et al. 2003). Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of intertidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae</i> , <i>Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		disturbed areas at any of the 16 sites
Moshabi et al. (2015) also explored the impacts of bait digging on the macrofauna of intertidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae</i> , <i>Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		(Derpie et al. 2002)
impacts of bait digging on the macrofauna of intertidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae, Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		(Define et al. 2003). Machabi et al. (2015) also explored the
Impacts of balt digging on the macrofauna of intertidal mudflats. The fauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae, Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		imports of bait diaging on the
Imacrorating of intertidal muditats. The fauna of their study area (the tidal mudiflats of Kneiss Islands, Tunisia) Imacrorating of their study area (the tidal mudiflats of Kneiss Islands, Tunisia) Imacrorating of their study area (the tidal mudiflats of kneiss Islands, Tunisia) Imacrorating of their study area (the tidal mudiflats of kneiss Islands, Tunisia) Imacrorating of their study area (the tidal mudiflats of kneiss Islands, Tunisia) Imacrorating of their study area (the tidal mudiflats of kneiss Islands, Tunisia) Imacrorating of their study area (the tidal mudiflats of kneiss Islands, Tunisia) Imacrorating of their study area (the tidal mudiflats of kneiss Islands, Tunisia) Imacrorating of their study area (the tidal mudiflats of kneiss Islands, Tunisia) Imacrorating of their study area (the tidal mudiflats of kneiss Islands, Tunisia) Imacrorating of their study area (the tidal the tidal the tidal the control stations were significantly higher than those Imacrorating of the tidal the three stations before Imacrorating and after bait collection, with some Imacrorating of the tidal the tidal the time stations after		impacts of ball digging on the
Tauna of their study area (the tidal mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the Nereididae, Arenicolidae (fishing target species) and the Cirratulidae. They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and affer bait collection, with some polychaete species disappearing after		macrorauna or intertidal mudilats. The
mudflats of Kneiss Islands, Tunisia) was mainly composed of polychaetes, the more abundant families being the <i>Nereididae, Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		tauna of their study area (the tidal
was mainly composed of polychaetes, the more abundant families being the <i>Nereididae</i> , <i>Arenicolidae</i> (fishing target species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		mudflats of Kneiss Islands, Tunisia)
the more abundant families being the Nereididae, Arenicolidae (fishing target species) and the Cirratulidae. They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		was mainly composed of polychaetes,
Nereididae, Arenicolidae (fishing target species) and the Cirratulidae. They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		the more abundant families being the
species) and the <i>Cirratulidae</i> . They found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		Nereididae, Arenicolidae (fishing target
found the number of taxa and abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		species) and the Cirratulidae. They
abundance of individuals were affected by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		found the number of taxa and
by bait digging; the abundances estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		abundance of individuals were affected
estimated at the control stations were significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		by bait digging; the abundances
significantly higher than those estimated at the three stations before and after bait collection, with some polychaete species disappearing after		estimated at the control stations were
estimated at the three stations before and after bait collection, with some polychaete species disappearing after		significantly higher than those
and after bait collection, with some polychaete species disappearing after		estimated at the three stations before
polychaete species disappearing after		and after bait collection, with some
		polychaete species disappearing after

one month of bait digging. This	
indicates that the intertidal	
macrozoobenthic biodiversity at the	
impacted stations is affected by the bait	
digging activity, or possibly by	
trampling.	
1 3	
Jackson and James (1979) investigated	
the effects of bait digging on cockle	
populations They found that increased	
digging in an area caused higher cockle	
mortality particular on smaller	
individuals. The cause of mortality was	
due to buriel/cmethoring as individuals	
that were buried at a depth of 10cm	
roroly survived	
Desci et al. (2007) investigated the	
Rossi et al. (2007) investigated the	
effects of trampling on mudilats, such	
as that associated with recreational	
activities like bait digging. They found	
that trampling clearly modified the	
abundance and population dynamics of	
the clam Macoma balthica and the	
cockle Cerastoderma edule. There was	
a negative impact on adults of both	
species, probably because footsteps	
directly killed or buried the animals,	
provoking asphyxia. However,	
trampling indirectly enhanced the	
recruitment rate of M. balthica. Small-	
sized C. edule showed no reaction to	
trampling. It is likely that small animals	
could recover more quickly because	
trampling occurred during the growing	
season and there was a continuous	
supply of larvae and juveniles.	
Trampling may also have weakened	
negative adult-iuvenile interactions	
between adult cockles and juvenile M	

balthica, thus facilitating the
recruitment. Rossi et al. (2007)
concluded that numan trampling is a
relevant source of disturbance for the
conservation and management of
mudilats. During the growing season
recovery can be fast, but in the long-
term it might lead towards the
dominance of <i>M. balthica</i> to the cost of
C. edule, thereby affecting ecosystem
functioning.
Wynberg & Branch (1997) assessed
the impacts of trampling associated
with the use of suction pumps for the
collection of prawns as bait, by
comparing areas that had been sucked
over with a prawn pump, to areas that
had been trampled only. Prawn
densities were depressed six weeks
following both sucking and trampling
but recovered by 32 weeks.
Macrofaunal numbers declined in most
treatment areas and macrofaunal
community composition in the most-
disturbed areas was distinct from that in
other areas. They determined that the
trampling itself has almost the same
effect as sucking for prawns, on both
the prawns and on the associated biota.
It is important to note that the effects on
macrofaunal communities can differ
substantially between estuaries. For
example, the mud content of an estuary
can affect the resilience of the
communities to bait digging. Although
Dernie et al. (2003) found that it was
not possible to predict the recovery
rates of assemblages based on

percentage of silt and clay in the sediment, there was a good relationship
between recovery rate and infilling rate,
which is linked to the physical
characteristics of the sediment. Clean
sand habitats were the quickest to
recover both in terms of physical and
biological characteristics. Other studies
have also found extended recovery
times for estuaries with high mud
content (Carvalho et al., 2013).
The site-specific nature of the impacts
of bait digging was also demonstrated
by Watson et al. (2017a). They found
that responses were both site and
disturbance type specific. Their data
also showed that responses were not
consistent between species (e.g. <i>C.</i>
volutator and P. ulvae) or even between
those within the same trophic group.
They, therefore, concluded that bait
collection alters the macrotaunal
community and the associated
sediment characteristics across large
spatial scales, but with the caveat that
the strength (and type) of the response
is site specific.
Lugworm is an important prey item for
the Grey Plover and the Bar-Tailed
Godwits in the Severn (Goss-Custard et
al., 1991). There is an important link
between macrofaunal biomass (energy
content) and the behaviour of wading
birds. Wading birds have been shown
to extend their feeding period, increase
their attack rate, broaden their prey or
move to different areas in order to cope

with reductions in infaunal biomass (Zwarts, 1993).	
Although the process of bait digging	
can directly target prey items for certain	
impact the forging efficiency of wading	
birds through increased mortality of	
associated invertebrate fauna. For	
example, Shepherd and Boates (1999)	
found that foraging efficiency of	
sandpipers was significantly lower in areas targeted for bait digging of	
bloodworms. Foraging efficiency	
decreased by 68.5%. This species of	
bait is not a prey item for the sandpiper	
but the process of bait digging resulted	
in a 38% decrease in density of their	
after one year of baitworm baryesting in	
the Bay of Fundy. This decrease was	
as a result of direct mortality and lower	
juvenile recruitment. It was also	
observed that sandpipers on dug	
deposits peeded for migration	
However, although the high mud	
content of many of the Severn	
Estuary's intertidal mud and sandflats	
might suggest that the habitat is more	
sensitive to disturbance, the extreme	
Lidal range and exposed nature of the Severn intertidal mud & sand flats	
means that these habitats in the Severn	
are not comparable to low-energy	
sheltered mud habitats elsewhere. In	
other mud habitats, physical	

			disturbance from bait digging is often visible for extended periods of time, in the Severn holes are generally not visible after one tidal cycle, even though back filling does not occur.		
Annex I species: - Bewick's swan Regularly occurring migratory species: - Greater white-fronted goose - Dunlin - Redshank - Shelduck - Gadwall Internationally important assemblage of waterfowl	The populations of the qualifying features: Maintain the 5 year peak mean population size for the - Bewick's swan population is no less than 289 individuals - Wintering European white fronted goose population is no less than 3,002 individuals - Wintering dunlin population is no less than 41,683 individuals - Wintering redshank population is no less than 2,013 individuals - Wintering shelduck population is no less than 2,892 individuals - Wintering gadwall population is no less than 330 - Waterfowl assemblage is no less than 68,026 individuals (ie the 5 year peak mean between 4090/0 4002/0)	 Above water noise Visual disturbance 	Bird disturbance is also a major concern, especially where peak bait digging coincides with peak bird abundance or intertidal activity (Townsend & O'Connor, 1993). A review by Hockin <i>et al.</i> (1992), shows disturbance can have an effect on breeding success through several factors e.g. nest abandonment, increased mortality of eggs due to predation and increased mortality of young through reduced feeding. Disturbance can reduce use of sites by birds, and can affect nest site choice, having a negative effect on population density. It can also have a negative effect on energy budgets – time spent flying, reduces time spent feeding. Sustained, localised disturbance in feeding areas can lead to shifts to alternative feeding sites (Tasker <i>et al.</i> 2000). Bait collection has been found to induce a 'temporary loss of habitat' for some bird species, with bait collector numbers negatively correlating with wader and gull abundance (Watson et al., 2017a). Wildfowl, such as mute swans may be the least likely group to be vulnerable to disturbance, as many of these energing area fad directly by	The ringed plover, grey plover, dunlin, curlew, redshank and shelduck predominantly forage intertidally (Burton <i>et al.</i> 2010). Noise and the presence of bait diggers may cause disturbance to bird species. Temporal peaks in bait digging (Autumn and Winter, West 2019) do coincide with the peak abundance of overwintering birds. However, the diggers presence is generally around low tide (West 2019) and bait digging activity is concentrated on the lower parts of the upper shore over relatively small areas (Annex 4, Figures 12-15). This reduces the pressure of disturbance as there is a large area available for birds to feed at low tide and the birds are often widely distributed across the intertidal area (Annex 3, Figures 2-8) but often with concentrations further out than the bait digging activity. Maximum numbers of bait diggers were recorded as 2-4 individuals, and these would often (but not always) be digging in close proximity to each other (E West pers obs).	D&S IFCA worked with the Association of Severn Estuary Authorities (ASERA) to produce a bait digging code of conduct, published after the survey work discussed in this report took place. The code promotes back-filing of holes, encourages anglers to avoid saltmarsh and <i>Sabellaria</i> and to only take as much bait as they need. It also informs anglers that ragworm may be more sensitive to exploitation in the Severn, and to restrict their take of these species, and to consider purchasing farmed ragworm. Little commercial bait collection takes place, but where it has been suspected
	Detween 1300/3-1392/3)		or these species are red directly by		

The distribution of the	humans (L	ley and Fearnley 2012,	There has been a steady increase	individuals involved
qualifying features within	Watson et	al. 2017a)	in winter shelduck population in	did dig significantly
the site:			the Severn estuary over the last	more frequently and
Maintain aggregations of	Goss-Cust	ard and Verboven (1993)	30 years (Burton <i>et al.</i> 2010;	for greater quantities
the	found that	he presence of people in	Cook et al. 2013). Cook et al.	of worm than the
- Bewick's swan	areas used	for feeding and breeding	suggested that the environmental	average recreational
- European white-	can alter th	e behaviour and distribution	conditions remain relatively	angler. Through the
fronted goose	of estuarine	e birds. Meaning the birds	favourable and that the Severn	IFCA's Byelaw
- Dunlin	may becon	ne displaced into areas with	Estuary is becoming increasingly	Review process,
- Redshank	a lower pre	y density. A disturbance	important for shelduck, because	D&S IFCA will be
- Shelduck	review by t	he Exe Estuary Management	the population is not tracking	reviewing all
- Gadwall	Partnershi	(2016) summarised that	regional or country trends.	byelaws relating to
- Waterfowl	disturbanc	e levels can be dictated by a	ç ;	hand working
aggregations	number of	factors such as noise level,	Shelduck are most abundant in	(including bait
at feeding, roosting	amount of	activity and number of	Bridgwater Bay, containing 71%	digging). Options for
and refuge sites are not	people pre	sent. However, disturbance	of the total Severn Estuary	management will
subject to significant	by bait coll	ection generally occurs via	population (Table 3, Annex 7) and	include, no action,
disturbance.	visual (see	ing the collector and	it is an important moulting area for	voluntary measures
	responding	as if they were a potential	shelduck during later summer and	and the
	predator) a	nd/or noise disturbance	autumn (Natural England, 2009;	potential introduction
The populations of the	, (causing di	stress via deviation from the	Burton et al. 2010). Moulting	of a Hand Working
qualifying features:	"natural" ar	nbient noise). Liley et al.	shelduck are present in high	Byelaw, which would
Maintain the 5 year peak	(2011) four	nd that whilst bait-digging	numbers in Bridgwater Bay	allow the IFCA to
mean population size for	and crab-ti	ing accounted for 7% of bird	between June and October. Mean	monitor levels of this
the	disturbance	e events in their study on the	counts of moulting shelduck	activity in the future,
- Bewick's swan	Exe Estuar	y, this was just a count of	between 2005 and 2014 from	and adapt to
population is no less	number of	events, and bait-digging	June to October were 1075, 2460,	changes in effort/
than 289 individuals	actually ac	counted for 16% of all major	3930, 2697 and 2334 respectively	environmental
- Wintering	flight event	S.	(Best, 2015). They are more	conditions if
European white fronted			vulnerable to disturbance when	necessary. If the
goose population is no	Liley et al.	(2012) carried out	moulting due to their inability to fly	IFCA did introduce
less than 3,002	observation	nal surveys in Poole	away. However, they utilise a	formal management
individuals	Harbour, re	cording activities which	wide area of Bridgwater Bay and	this may include the
- Wintering dunlin	resulted in	bird disturbance. For 93% of	the frequency of disturbance likely	requirement to back
population is no less	observation	ns there was no response	to be caused by bait digging	fill holes and
than 41,683 individuals	from birds,	only 1% resulted in major	would not have an impact on the	trenches.
- Wintering	flights. 155	8 potential disturbance	species. Additionally, peak bait	
redshank population is	events wer	e recorded over 63 hours of	digging activity would only overlap	
no less than 2,013	survey. Du	ring the 63 hours of	with the latter part of Shelduck	

individuals	surveillance there were just five	moulting, and much of it would fall	
- Wintering	individual disturbance events involving	outside this season. Other	
shelduck population is no	bait collection, none resulted in the	species in Bridgwater Bay which	
less than 2,892	birds being flushed.	represent a high number of the	
individuals		total Severn Estuary population	
- Wintering gadwall	Townsend and O'Connor (1993) found	are grey plover (54%), dunlin	
population is no less	that disturbance caused by bait digging	(53%), lapwing (47%), spotted	
than 330	activity greatly reduced the extent of	redshank (45%), redshank (43%)	
- Waterfowl	use of the Lindisfarne National Nature	and ringed plover (36%). An	
assemblage is no less	Reserve (NNR) by wigeon, bar-tailed	additional eight other species are	
than 68,026 individuals	godwit and redshank. However,	present in significant numbers	
(ie the 5 year peak mean	significant increases in the populations	(<30%) and can be seen in Table	
between 1988/9-1992/3)	of wildfowl were recorded in the year	3, Annex 7. Data from the first	
,	following a ban on bait digging.	year of bait digging surveys	
	6 66 6	suggest relatively high levels of	
	In addition to the disturbance to birds	bait digging (2 individuals	
	from bait digging, there have been	observed) at Hinkley Point (West	
	several studies that have shown dog	2019) but no bait diggers were	
	walkers can induce anti-predator	observed in 2014-2015. The low	
	responses in birds including increased	sampling effort for this site makes	
	vigilance (Randler, 2006) and early	these results unreliable. Certainly.	
	flight, as well as disturbing some	this site is harder to reach, and	
	species of breeding shorebirds from	only targeted for ragworm.	
	their nests (Lord et al., 2001) which	suggesting the relatively high	
	may lead to a cascade of related	levels observed in 2012-2013 at	
	responses that negatively affect birds.	Hinkley Point may be mis-leading.	
	such as areas of intertidal habitat being	Digging at Burnham-on-Sea	
	unavailable to the birds (Lilev et al.	peaked in the winter months.	
	2011) However, the impact of dog	suggesting impacts on moulting	
	walkers on wading birds will be subject	shelduck might be minimal (West	
	to the duration frequency and location	2019) The parts of the shore dug	
	of disturbance as well as being species	at Burnham on Sea (Annex 4	
	specific	Figure 12) also suggest that	
	opeoine.	minimal disturbance will take	
		place in comparison to the	
		distribution of birds at low tide in	
		Bridgwater Bay (Anney 3 Figures	
		2-4)	
		∠ т <i>j</i> .	

		The sector Brean Down to Anchor
		Head encompasses Weston Bay
		(Annex 7, Figure 19). Weston Bay
		contains significant numbers of
		redshank (17%), gadwall (11%)
		and teal (11%) when compared to
		the Severn Estuary as a whole
		(Table 5, Annex 7). Another 12
		species are also present in high
		numbers ($<10\%$) Latham (2015)
		identified high tide waterbird roost
		sites situated at the southern end
		of the sector, which includes the
		Ave Estuary
		And Estudiy.
		The latest five year summary of
		WeBS data indicate the number
		of waterbirds within the sector
		non-ked during the winter months
		(November to March) The
		number of redshapk within the
		soctor tonds to posk during the
		sector tenus to peak during the
		although this species is also
		although this species is also
		the winter period (Latham 2015)
		The distribution of rod shopk at
		The distribution of red shalls at
		Tigure 9) auggeste that heit
		Figure 8) suggests that balt
		digging activity at this site (Annex
		4, Figure 14) will not overlap
		significantly. Redshanks favour
		river mouths where there is
		Treshwater input such as the River
		Axe (Burton et al. 2010) which is
		located within this sector.
		Sand Bay contains significant
		numbers of shelduck (14%),

		ringed plover (4%), curlew (3%), grey plover (3%), redshank (3%) and dunlin (1%), see Table 4,	
		Annex 3.	
		The latest five-year summary WeBS data indicated that the sector from Anchor Head to Sand	
		Point supports three SPA	
		qualifying species: shelduck	
		(Annex 3, Figure 5), dunlin	
		(Annex 3, Figure 7) and redshank	
		(Annex 3, Figure 6). According to	
		the WebS data the number of all	
		the species lends to peak within	
		menthe The sector supported on	
		nonins. The sector supported, on	
		shelduck population 1.5% of the	
		wintering duplin population, and	
		1.2% of the wintering redshank	
		nonulation of the entire Severn	
		Estuary between 2008/09 and	
		2012/13 (Latham, 2015), There	
		has been an increase in redshank	
		numbers at Sand Bay within the	
		last 30 years (Burton <i>et al.</i> 2010).	
		In the south of Sand Bay, a mixed	
		waterbird roost site in open water	
		was identified, which was typically	
		dominated by shelduck and black-	
		headed gulls (Latham, 2015).	
		WeBS interviews identified	
		potential sources of disturbance	
		in Sand Bay from jet skiing and	
		lifeboat manoeuvres,	
		predominantly during the summer	
		months (Latham, 2015). As with	
		other sites, bait digging activity at	

		Sand Bay (Annex 4, Figure 5)	
		tends to occur much higher on the	
		shore than peak bird counts at	
		Sand Bay (Annex 3, Figures 5-7)	
		Burton et al. (2010) analysed	
		WoRS data in order to identify the	
		status of birds in the Sovern	
		Status of birds in the Seveni	
		Estuary and Bristol Channel,	
		compared to historic numbers and	
		in relation to any site-specific or	
		broad scale patterns. The study	
		found that the proportion of wader	
		numbers wintering in south west	
		Britain and the Severn Estuary,	
		are decreasing, with the highest	
		declines in grey plovers and	
		dunlins over the past 20 years.	
		The decline is negatively	
		correlated with mean winter	
		temperatures. The decline of grev	
		plovers and dunlins in the Severn	
		Estuary may be a consequence of	
		climate change, rather than site-	
		chille change, fatter than site-	
		Specific issues (Austin and Debfiech 2005) The SDA Teelkit	
		Remisch, 2005). The SPA Toolkit	
		assessed Bewick's swan, white-	
		fronted goose, dunlin, redshank,	
		shelduck, gadwall, curlew and	
		pintail from WeBS alerts as	
		having no site-specific decline.	
		The ringed plover was not	
		assessed.	

7. Conclusion

Taking into account the information detailed in the Appropriate Assessment, it can be concluded that the current level of bait digging has no adverse effect on the integrity of the Severn Estuary SAC or SPA interest features. However, the management of bait collection should be considered by D&S IFCA if commercial bait digging activity commenced which could result in an adverse effect on the conservation objectives and site integrity of the SAC. Best practice outlined in ASERA's code of conduct should be actively promoted and encouraged.

8. In-combination assessment

8.1 Other fishing activities

The following fishing activities are either occurring or have not been able to have been ruled out as occurring in the Severn Estuary SPA.

Fish traps – Thought not to be occurring but hasn't been able to be ruled out. Therefore no in-combination effect thought to be possible.

Handlines – Thought not to be occurring but hasn't been able to be ruled out. Therefore no in-combination effect thought to be possible.

Drift nets, demersal and pelagic – Thought not to be occurring but haven't been able to be ruled out. Therefore no in-combination effect thought to be possible.

Purse seine – Thought not to be occurring but hasn't been able to be ruled out. Therefore no in-combination effect thought to be possible.

Shrimp push nets– Thought not to be occurring but hasn't been able to be ruled out. Therefore no in-combination effect thought to be possible.

Longlines, demersal and pelagic - Thought to be occurring at a very low level in the Severn Estuary. Due to the very low level of fishing activity relating to both activities it is thought that no in-combination effects will lead to the conservation objectives not being met for any of the bird features in this assessment.

Beach seine/ ringnets – Beach seines are thought to be occurring at a very low level and ring nets are not thought to be occurring in the Severn Estuary. Due to the very low level of fishing activity relating to both activities, it is thought that no in-combination effects will lead to the conservation objectives not being met for any of the bird features in this assessment.

Static netting - Fyke nets, stake nets, gill nets, trammels and entangling nets, are used in the Severn Estuary but at a low and decreasing level. Due to the low level of fishing activity and spatial and temporal distribution of bait digging effort in relation to the site as whole, it is thought that no in-combination effects will lead to the conservation objectives not being met for any of the features in this assessment.

D&S IFCA conclude there is no likelihood of significant adverse effect on the interest features from in-combination effects with other fishing activities addressed within section 8.1.

8.2 Other activities

The Severn Estuary is a large and complex European Marine Site with several large cities including Bristol, Gloucester, Newport and Cardiff and a number of major industrial areas within the catchment area. Currently there are a number of proposed plans or projects in the Severn Estuary EMS which could theoretically interact with the bird features addressed. These are in various stages of development – some are already occurring (e.g. Hinkley B, wildfowling), others are in the development stage with some on-the-ground activity (Hinkley C) and others are still in the early planning and development stages (e.g. Tidal Lagoons, Bridgwater Barrier, Coastal Path). These activities have been included following the informal advice from Natural England. Pressures which are highlighted in yellow are those thought to be most likely to be have an 'in-combination effect' with the fisheries activities described in this assessment.

Hinkley Point B & C

Static netting - Fyke nets, stake nets, gill nets, trammels and entangling nets, are used in the Severn Estuary but at a low and decreasing level. Due to the low level of fishing activity and spatial and temporal distribution of bait digging effort in relation to the site as whole, it is thought that no in-combination effects will lead to the conservation objectives not being met for any of the features in this assessment.

Description of activities

Hinkley Point nuclear power station sits on the edge of Bridgwater Bay on the edge of the Severn Estuary EMS. Hinkley Point B (HPB) has been active since 1976 and continues to operate. HPC is a proposed development for two new nuclear reactors currently being undertaken by EDF Energy, next to HPA and HPB.

Pressures

Because of the large-scale development of Hinkley C and decommissioning, it is impossible to consider all of the associated pressures from both direct operation of the site and the building of Hinkley C and the decommissioning of Hinkley B. It is possible that some of the works associated with both Hinkley B and Hinkley C may have similar pressures to those identified as being associated with fixed nets in the Severn Estuary.

In-combination assessment

Hinkley C has undergone an extensive Appropriate Assessment process with independent survey and monitoring through the BEEMS project, co-ordinated by Cefas. The extremely small-scale and localised potential impacts of fixed nets on the bird features are considered insignificant compared to any potential adverse relating to Hinkley developments. Devon and Severn IFCA sits on the Hinkley C Marine Technical forum and has good links with EDF so has a direct mechanism for staying up-to-date on Hinkley developments, if any of the planned work changes substantially. Therefore it is not thought that any in-combination effects will prevent the conservation objectives of the Severn Estuary EMS from being met.

Tidal Lagoons – Cardiff and Newport

Description of activities

Tidal Lagoon Power has proposed the development of two new Tidal Lagoons on the Welsh coast; one near Cardiff and one in the Newport area. Final designs or locations of the lagoons have not yet been determined but it is thought that they would encompass large areas of intertidal and subtidal habitat in the Severn Estuary.

Pressures

- Above water noise
- Barrier to species movement
- Collision ABOVE water with static or moving objects not naturally found in the marine environment (e.g. boats, machinery, and structures)
- Emergence regime changes local, including tidal level change considerations
- Hydrocarbon & PAH contamination. Includes those priority substances listed in Annex II of Directive 2008/105/EC
- Introduction of light
- Introduction of other substances (solid, liquid or gas)
- Introduction or spread of non-indigenous species
- Litter
- Synthetic compound contamination (incl. pesticides, antifoulants, pharmaceuticals). Includes those priority substances listed in Annex II of Directive 2008/105/EC.
- Transition elements & organo-metal (e.g. TBT) contamination. Includes those priority substances listed in Annex II of Directive 2008/105/EC.
- Visual disturbance

In-combination assessment

At the present time, there is not enough information to make a detailed judgement on incombination effects from Tidal Lagoons. However, the scale and temporal and spatial distribution of bait digging is tiny in comparison to the potential of large-scale developments such as those proposed by the Tidal Lagoons. Therefore, any in-combination effect will be negligible compared to those of the lagoons alone.

Wildfowling

Description of activities

Wildfowling occurs in the Severn Estuary EMS. The majority is undertaken by wildfowling clubs, by Sites of Special Scientific Interest (SSSI) consent or National Nature Reserve (NNR) permits. However, there is still a certain amount of non-permitted wildfowling taking place. There are five wildfowling clubs on the English side of the Severn Estuary:

1) Highbridge, Huntspill & Burnham District Wildfowlers Club (HHBWC) The club shoot over the Crown Estate land Bridgwater Bay SSSI, and also are primary shooters on the excepted (see Annex 6, Figure 11) NNR land at Bridgewater Bay. This is licenced by Natural England, via a permit system.

2) Bridgwater Bay Wildfowlers Association (BBWA)

At Bridgwater Bay, BBWA shoot over the NNR at Comwich which is licenced by Natural England via a permit system. BBWA are the other primary shooters on the excepted (see Annex 6, Figure 11) NNR land at Bridgwater Bay. BBWA also shoot over Crown Estate and Non-Crown Estate land on the River Axe.

 Weston Sporting Club (WSC)
 WSC shoot over Crown Estate and Non-Crown Estate land on (and adjacent to) the River Axe on the Severn Estuary

4) Clevedon Wildfowling Association (CWA)

The CWA shoot over Crown Estate and Non-Crown Estate land at Woodspring Bay on the Severn Estuary

5) Gloucestershire Wildfowlers Association (GWA)

The open season for wildfowling in England and Wales, above the mean high water mark is 1st September to 31st January. The open season for duck and goose species below the mean high water mark is 1st September to 20th February (BASC, 2015). Sunday shooting of wildfowl is not permitted and there may be local restrictions on shooting at night. The

species that can be shot during their open season and are a Severn SPA feature are; Gadwall, Pintail, Pochard, Shoveler, Teal, Tufted duck, Wigeon, White fronted geese and Mallard (Wildlife and Countryside Act 1981).

Pressures

- Above water noise
- Litter
- Removal of target species
- Visual disturbance

In-combination assessment

Wildfowling occurs to the west of the fished area in Sellick Zone 1 (Annex 6, figure 11 and Annex 4, Figure 10). The pressures of visual disturbance and noise from bait digging could have an in-combination effect with wildfowling. Disturbance from wildfowling would be in the form of presence by wildfowlers and the noise from a fired shot. Wildfowling for ducks and goose species can only occur below mean high water between 1st September and 20th February (except on Sundays). Natural England has carried out HRAs for wildfowling licenses which conclude no adverse impact on site integrity. The spatial and temporal distribution of bait digging will have no impact on the features of the EMS and will occur at different times to the wildfowling (low vs high tide) so no adverse effect will occur.

Coastal Path

Description of activities

The South West Coast Path and the England Coast Path are to be extended from Minehead to Bristol. The final route of the coastal path has not yet been released. Minehead to Brean Down is now open to the public, coastal access rights came into force on 15th March 2016. There is a restricted coastal margin access to the saltmarsh and mudflats of Stert Flats (Bridgwater Bay). Coastal access from Brean Down to Aust is currently in development and expected to be open in 2017.

Pressures

- Above water noise
- Collision ABOVE water with static or moving objects not naturally found in the marine environment (e.g. boats, machinery, and structures)
- Barrier to species movement
- Visual disturbance
- Introduction of light
- Litter

In-combination assessment

At the present time, there is not enough information to make a detailed judgement on incombination effects from the coast path development. Associated pressures would be from a result of construction work to create the coast path. Recreational activity is thought to increase due to the new coast path, as there will be access to previously inaccessible areas. Due to the lack of impact of bait digging and its limited spatial and temporal distribution, it is not thought that any in-combination effects will prevent the conservation objectives of the Severn Estuary EMS from being met.

Other

The impact of future plans or projects will require assessment in their own right, including accounting for any in-combination effects, alongside existing activities.

D&S IFCA conclude there is no likelihood of significant adverse effect on the interest features from in-combination effects with other plans or projects addressed within section 8.2.

9. Summary of consultation with Natural England N/A

10. Integrity test

It can be concluded that bait digging, alone or in-combination, within the Severn Estuary SAC & SPA will not adversely affect the features of the European Marine Site or prevent the conservation objectives being met.

Annex 1: Reference list

Austin, G., Rehfisch, M.M. (2005) Shifting non-breeding distributions of migratory fauna in relation to climatic change. Global Change Biology 11, 31–38.

BASC (The British Association for Shooting & Conservation), Revised October 2015. Available at: <u>http://basc.org.uk/cop/wildfowling/</u> [Accessed: 22/03/2016]

Beukema JJ. (1995). Long-term effects of mechanical harvesting of lugworms *Arenicola marina* on the zoobenthic community of a tidal flat in the wadden sea. Netherlands Journal of Sea Research. 33: 2019-227

Blake R.W. (1979) Exploitation of a natural population of *Arenicola marina* (L.) from the north east coast of England. Journal of Applied Ecology 16: 663-670.

Burton, N.H.K., Musgrove, A.J., Rehfisch, M.M., Clark, N.A. (2010) Birds of the Severn Estuary and Bristol Channel: Their current status and key environmental issues. Marine Pollution Bulletin, 61: 115-123.

BTO (2016a) Bridgwater Bay sector 13411. Available from: http://app.bto.org/websonline/public/gpub-boundary.jsp?loclabel=13411_Bridgwater%20 Bay%20(Severn%20Estuary)~ST259470 [Accessed: 13/07/2016]

BTO (2016b) Sand Bay sector 14402. Available from: http://app.bto.org/websonline/public/gpub-boundary.jsp?loclabel=14402_Sand%20 Bay%20(Severn%20Estuary)~ST315642 [Accessed: 13/07/2016]

BTO (2016c) Axe Estuary sector 14401. Available from: <u>http://app.bto.org/websonline/public/gpub-boundary.jsp?loclabel=14401_Axe%20</u> <u>Estuary%20(Severn)%20(Severn%20Estuary)~ST296598</u> [Accessed: 13/07/2016]

Carvalho S, Constantino R, Cerqueria M, Pereira F, Subida M, Drake P, Gaspar M (2013). Short term impact of bait digging on intertidal microbenthic assemblages of two south Iberian Atlantic systems. Estuarine, Coastal and Shelf Science. 132 pp65-75.

Cook, A.S.C.P., Barimore, C., Holt, C.A., Read, W.J. and Austin, G.E. (2013). Wetland Bird Survey Alerts 2009/2010: Changes in numbers of wintering waterbirds in the Constituent Countries of the United Kingdom, Special Protection Areas (SPAs) and Sites of Special Scientific Interest (SSSIs). BTO Research Report 641. BTO, Thetford.

Cryer, M., Whittle, G.N. & Williams, R. (1987) The impact of bait collection by anglers on marine intertidal invertebrates. Biological Conservation. 42: 83-93.

Davey J.T. and C.L. George (1986) Specific interactions in soft sediments: factors in the distribution of *Nereis* (Hediste) *diversicolor* in the Tamar Estuary, Ophelia 26: 151-164.

De Boer W.F. and Longamane F.A. (1996) The exploitation of intertidal food resources in Inhaca Bay, Mozambique, by shorebirds and humans. Biological Conservation. 78: 295-303

Dernie K.M., Kaiser M.J., Warwick R.M. (2003) Recovery rates of benthic communities following physical disturbance J App Ecol 72: 1043-1056 Evans, S., Moon, J., Bunker, A.R. and Green. M. 2015. Impacts of Bait Digging on the Gann: An Evidence Review. NRW Evidence Report No: 81 34pp, NRW, Bangor.

Exe Estuary Management Partnership (2016) Bait Collection Disturbance Literature Review 2016 – Exe Estaury EMS Case Study.

Fowler SL. (1999). Guidelines for managing the collection of bait and other shoreline animals within UK European marine sites. UK Marine SAC project.

Goss-Custard J.D., Warwick R.M., Kirby R., McGrorty, S., Clarke, R.T., Pearson, B., Rispin, W.E., Durell, S.E.A. le V. dit & Rose, R.J. (1991). Towards predicting wading bird densities from predicted prey densities in a post-barrage Severn estuary. Journal of Applied Ecology 28:1004-1026.

Goss-Custard J & Verboven N (1993). Disturbance and feeding shorebirds on the Exe estuary. Wader Study Group Bulletin. 68: 59-66.

Grant, A., J. G. Hateley & N. V. Jones, 1990. Interpopulation variation of life history and metal tolerance in *Nereis diversicolor*. In Scaps P. (2002) A review of the biology, ecology and potential use of the common ragworm *Hediste diversicolor* (O.F. Müller) (Annelida: Polychaeta), Hydrobiologia 470: 203–218, 2002.

Heiligenberg, T. van den. 1987. Effects of mechanical and manual harvesting of lugworms Arenicola marina L. on the benthic fauna of tidal flats in the Dutch Wadden Sea. Biological Conservation, 39, 165-177.

Hockin, D., Ounsted, M., Gorman, M., Hill, D., Keller, V., & Barker, M. A. (1992) Examination of the effects of disturbance on birds with reference to its importance in ecological assessments. Journal of Environmental Management, 36: 253-286

Jackson J and James R. (1979). The influence of bait digging on cockle, *Cerastoderma edule*, populations in North Norfolk. Journal of Applied Ecology. 16: 671-679.

Johnson G. (1984) Bait collection in a proposed marine nature reserve, MSc Report, Ecology and Conservation Unit, University College London in http://www.ukmarinesac.org.uk/activities/bait-collection/, accessed February 2019.

Latham, J. (2015) Identification of wintering waterbird high tide roosts on the Severn Estuary SSSI/SPA (Brean Down to Clevedon). Report for Natural England (RP2262).

Liley D., Cruickshanks K., Waldon J., Fearnley H. (2011). Exe Estuary Disturbance Study. Footprint Ecology Ltd., Wareham, Dorset.

Liley D. and Fearnley H. (2012) Poole Harbour Disturbance Study, Report for Natural England, Footprint Ecology Ltd, Dorset, p.75

Liley, D., Cruickshanks, K, Fearnley, H. & Lake, S. (2012) The effect of bait collection on waterfowl foraging behaviour in Holes Bay, Poole Harbour. Report for Natural England. Footprint Ecology Ltd., Wareham, Dorset.

Lord A, Waas JR, Innes J, Whittingham MJ (2001). Effects of human approaches to nests of northern New Zealand dotterels. Biological Conservation. 98: 233-240.

McLusky D.S , Anderson F.E. and S. Wolfe-Murphy (1983) Distribution and population recovery of Arenicola marina and other benthic fauna after bait digging, Marine Ecology Progress Series 11:173-179

Moshabi, N., Pezy, J-P., Dauvin, J-C. & Neifar, L. (2015) Short-term impact of bait digging on intertidal macrofauna of tidal mudflats around the Kneiss Islands (Gulf of Gabés, Tunisia). Aquatic Living Resources 28: 111-118

Natural England and the Countryside Council for Wales' Conservation Advice – formal advice given under Regulation 33(2)(a) of the Conservation (Natural Habitats, &c.) Regulation 1994, as amended. June 2009.

Natural England (2015) Marine conservation advice for Special Area of Conservation: Severn Estuary (UK0013030)

Natural England's risk assessment Matrix of fishing activities and European habitat features and protected species

Olive, P.J.W. (1993) Management of the exploitation of the lugworm *Arenicola marina* and the ragworm *Nereis virens* (Polychaeta) in conservation areas. *Aquatic Conservation: Marine and Freshwater Ecosystems* **3**: 1-24

Randler, C. (2006). Disturbances by dog barking increase vigilance in coots Fulica atra. European Journal of Wildlife Research. 52. 265-270.

Ross E.J. (2015) Fishing Activities Occurring in the Severn Estuary European Marine Site, Devon and Severn IFCA Report

Ross E.J (2013) Site Specific Assessment for Red High Risk Categories, Severn Estuary SAC. Devon and Severn IFCA

Ross E.J (2013b) Blow lug *Arenicola marina* density in the Severn Estuary European Marine Site: A baseline survey 2012-2013. Devon and Severn IFCA.

Rossi, F., Forster, R.M., Montserrat, F., Ponti, M., Terlizzi, A., Ysebaert, T. & Middelburg, J.J. (2007) Human trampling as short-term disturbance on intertidal mudflats: effects on macrofauna biodiversity and population dynamics of bivalves. Marine Biology 151: 2077-2090.

Scaps, P. (2002) A review of the biology, ecology and potential use of the common ragworm *Hediste diversicolor* (O.F. Müller) (Annelida: Polychaeta), Hydrobiologia 470: 203–218, 2002.

Shepherd, P.C.F. and Boates, S.J. (1999). Effects of a commercial baitworm harvest on Semipalmated Sandpipers and their prey in the Bay of Fundy hemispheric shorebird reserve. Conservation Biology. 13: 347-356.

Shull, D.H., (1997) Mechanisms of infaunal polychaete dispersal and colonisation in an intertidal sandflat. Journal of Marine Research. 55: 153-179.

SPA Toolkit

Tasker, M.L., Camphuysen, C.J., Cooper, J., Garthe, S., Montevecchi, W.A., Stephen, J.M.B. (2000) The impacts of fishing on marine birds. ICES Journal of Marine Science, 57: 531-547

Townshend, D.J. & O'Connor, D.A. (1993) Some Effects of Disturbance to Waterfowl from Bait Digging and Wildfowling at Lindisfarne National Nature Reserve, North-east England. Wader Study Group Bulletin. 68: 47–52.

Watson, G.J., Murray, J.M., Schaefer, M., Bonner, A. and Gillingham, M. (2017a) Assessing the impacts of bait collection on inter-tidal sediment and the associated macrofaunal and bird communities: The importance of spatial scales, Marine Environmental Research 130: 122-133

Watson, G.J., Murray, J.M., Schaefer, M. and Bonner, A. (2017b). Bait worms: a valuable and important fishery with implications for fisheries and conservation management. Fish and Fisheries. 18: 374-388

West E.J. (2019) Bait digging in the Severn Estuary European Marine Site, Data Analysis Report. Devon and Severn IFCA.

Wynberg, R.P. & Branch, G.M. (1997) Trampling associated with bait-collection for sandprawns *Callianassa kraussi* Stebbing: effcts on the biota of an intertidal sandflat. Environmental Conservation 24(2): 139-148

Zwarts, L. and Wanink, J. (1993). How the food supply harvestable by waders in the Wadden Sea depends on the variation in energy density, body weight, biomass, burying depth and behaviour of tidal-flat invertebrates. Netherlands Journal of Sea Research, 31(4), pp.441-476.

Annex 2: Natural England's consultation advice

Annex 3: Site Maps

Figure 1 - Map showing the extent of the Severn Estuary SPA

Figure 2 – WeBS low tide count data for Shelduck density in Bridgewater Bay

Figure 3 - WeBS low tide count data for Redshank density in Bridgewater Bay

Figure 4 - WeBS low tide count data for Dunlin density in Bridgewater Bay

Figure 5 - Fishing Activity and WeBS data low tide count for Shelduck density in Sand Bay

Figure 6 - Fishing Activity and WeBS low tide count data for Redshank density in Sand Bay

Figure 7 - Fishing Activity and WeBS low tide count data for Dunlin density in Sand Bay

Figure 8 - Fishing Activity and WeBS low tide count data (November to February) for Redshank density in Weston Bay.

Annex 4: Fishing Activity Information

Figure 9. Survey locations for bait digging for lugworm (Weston Bay to Burnham-On-Sea) and ragworm (Hinkley Point) (see West 2019)

Figure 11 – Survey results 2012-2015, Popularity of different locations in the Severn Estuary for bait digging; A) bait digging intensity (number of bait diggers per sampling hour) and B) sampling effort across the sites.

Figure 12. Location of bait digging activity observed at Burnham beach

Figure 13. Location of bait digging activity observed at Berrow

Figure 14. Location of bait digging activity observed at Weston Bay

Figure 15. Location of bait digging activity observed at Sand Bay

Annex 5: Pressures Audit Trail

Pressure(s): Shore-based activities	Bewick's swan	Dunlin	Gadwall	Greater White- Fronted Goose	Redshank	Shelduck	Internationally important assemblage >20,000 waterfowl	Screening Justification
Above water noise	S	S	S	S	S	S		IN – Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure
Changes in suspended solids (water clarity)			NS					OUT - Insufficient activity levels to pose risk of large scale pollution event
Collision BELOW water with static or moving objects not naturally found in the marine environment (e.g., boats, machinery, and structures)			NS					OUT – Pressure not thought to be associated with activity
Hydrocarbon & PAH contamination. Includes those priority substances listed in Annex II of Directive 2008/105/EC.	IE	IE	IE	IE	IE	IE		OUT - Insufficient activity levels to pose risk of large scale pollution event
Introduction of light	S	S	IE	S	S	S		OUT - Activity not thought to be occurring at night
Introduction of other substances (solid, liquid or gas)	IE	IE	IE	IE	IE	IE		OUT - Insufficient activity levels to pose risk of large scale pollution event
Introduction or spread of non- indigenous species	IE	S	NS	IE	S	S		OUT – Activity operates in local area only so risk considered extremely low
Litter	IE	IE	S	IE	IE	IE		OUT – Activity not thought to be associated with litter
Removal of non-target species	S	S	S	S	S	S		IN – Need to consider intensity of activity
Synthetic compound contamination (incl. pesticides, antifoulants,	IE	IE	IE	IE	IE	IE		OUT - Insufficient activity levels to pose risk of large scale pollution

pharmaceuticals). Includes those priority substances listed in Annex II of Directive 2008/105/EC.							event
Transition elements & organo-metal (e.g. TBT) contamination. Includes those priority substances listed in Annex II of Directive 2008/105/EC.	S	S	IE	S	S	s	OUT - Insufficient activity levels to pose risk of large scale pollution event
Underwater noise changes	IE		IE	IE		IE	OUT – Pressure not thought to be associated with activity
Visual disturbance	S	S	S	S	S	S	IN - Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure

Annex 6: In-Combination Map

Bridgwater Bay National Nature Reserve

Excepted Area for Wildfowling. The foreshore between points A and B

Figure 16 – Map of the excepted area (between lines A&B) for wildfowling in Bridgwater Bay, ©Natural England.

Species	2009-10	2010-11	2011-12	2012-13	2013-14	5 Year Mean Peak counts	Percentage of the whole Severn Estuary
Bewick's swan	0	0	0	0	0	0	0%
Curlew	1240	950	847	974	1136	1029.4	28%
Dunlin	9400	22000	17500	10004	8450	13470.8	53%
Spotted redshank	5	2	6	7	5	5	45%
Greater white- fronted goose	0	0	0	0	0	0	0%
Gadwall	0	0	3	0	2	1	0%
Grey plover	185	120	147	207	158	163.4	54%
Lapwing	3535	344	8189	5150	5345	4512.6	47%
Mallard	47	21	57	390	249	152.8	5%
Pochard	2	0	0	0	0	0.4	0%
Pintail	12	33	90	107	155	79.4	19%
Redshank	550	550	1399	1878	2670	1409.4	43%
Ringed plover	145	85	294	1410	135	413.8	36%
Shelduck	3200	1820	3243	3506	1746	2703	71%
Shoveler	16	1	10	4	60	18.2	4%
Teal	430	1200	475	1050	1505	932	17%
Tufted duck	20	0	0	82	3	21	3%
Whimbrel	27	19	33	91	29	39.8	20%
Wigeon	365	2200	609	852	1173	1039.8	14%

Table 3: Webs core counts data for the Bridgwater Bay, 13411 (Figure 12)

Species	2009-10	2010-11	2011-12	2012-13	2013-14	5 Year Mean Peak counts	Percentage of the whole Severn Estuary
Bewick's swan	0	0	0	0	0	0	0%
Curlew	105	115	110	155	145	126	3%
Dunlin	700	250	70	200	315	307	1%
Spotted redshank	0	0	0	0	0	0	0%
Greater white- fronted goose	0	0	0	0	0	0	0%
Gadwall	0	0	0	0	0	0	0%
Grey plover	0	14	20	0	12	9.2	3%
Lapwing	0	0	0	0	0	0	0%
Mallard	5	15	0	3	7	6	0%
Pochard	0	0	0	0	0	0	0%
Pintail	0	0	0	0	0	0	0%
Redshank	180	75	35	50	73	82.6	3%
Ringed plover	7	0	13	220	13	50.6	4%
Shelduck	450	720	490	540	365	528.75	14%
Shoveler	0	0	0	0	0	0	0%
Teal	0	0	0	0	0	0	0%
Tufted duck	0	0	0	0	0	0	0%
Whimbrel	0	1	0	0	3	0.8	0%
Wigeon	0	0	0	0	0	0	0%

Table 4: Webs core counts data for the Sand Bay, 14402 (Figure 13)

Species	2009-10	2010-11	2011-12	2012-13	2013-14	5 Year Mean Peak counts	Percentage of the whole Severn Estuary
Bewick's swan	0	0	0	0	0	0	0%
Curlew	87	66	37	62	91	68.6	2%
Dunlin	1011	884	400	300	552	629.4	2%
Spotted redshank	0	1	0	0	1	0.4	4%
Greater white- fronted goose	0	0	0	0	0	0	0%
Gadwall	18	41	22	3	31	23	11%
Grey plover	1	1	1	1	0	0.8	0%
Lapwing	560	700	210	500	600	514	5%
Mallard	154	113	112	138	180	139.4	5%
Pochard	61	52	58	7	1	35.8	7%
Pintail	0	0	2	1	0	0.6	0%
Redshank	261	624	568	665	657	555	17%
Ringed plover	29	35	13	22	25	24.8	2%
Shelduck	479	355	170	205	350	270	7%
Shoveler	18	7	10	7	8	10	2%
Teal	326	1050	800	436	291	580.6	11%
Tufted duck	39	24	20	17	14	22.8	3%
Whimbrel	4	9	1	0	1	3	1%
Wigeon	120	45	118	26	88	79.4	1%

Table 5: Webs core counts data for the Axe Estuary, 14401 (Figure 14)

Table 6: WeBS core counts data for the Severn Estuary

Species	2009-10	2010-11	2011-12	2012-13	2013-14	5 Year Mean Peak counts
Bewick's swan	303	311	193	270	125	240.4
Curlew	3731	4176	3091	3759	3546	3660.6
Dunlin	21640	31937	29338	23241	20248	25280.8
Spotted redshank	12	8	8	13	14	11
Greater white- fronted goose	300	560	280	191	238	313.8
Gadwall	193	224	234	178	208	207.4
Grey plover	256	249	384	366	254	301.8
Lapwing	7967	4455	12023	9943	13252	9528
Mallard	3086	3334	2846	2431	2916	2922.6
Pochard	593	734	474	426	334	512.2
Pintail	494	456	373	355	382	412
Redshank	2433	3349	3341	3217	4001	3268.2
Ringed plover	982	316	940	2625	816	1135.8
Shelduck	5148	2945	3977	4365	2692	3825.4
Shoveler	497	426	481	524	514	488.4
Teal	3882	4568	5553	7064	6008	5415
Tufted duck	896	1003	688	752	591	786
Whimbrel	226	209	138	298	141	202.4
Wigeon	7676	10284	7673	5961	6740	7666.8