

Fisheries in EMS Habitats Regulations Assessment for Amber and Green risk categories

European Marine Site: Plymouth Sound & Estuaries

Fishing activities assessed: Miscellaneous

Gear/feature interactions assessed:

D&S IFCA Interaction ID	Fishing Activity	Sub-feature(s)
HRA_UK9010141_AO39		Avocet
HRA_UK9010141_AO39		Little egret
HRA_UK9010141_K39	Crab tiling	Intertidal mud
HRA_UK9010141_P39	_	Intertidal mixed sediments
HRA_UK9010141_L39		Intertidal sand & muddy sand

Contents

1. Introduction	3
1.1 Need for an HRA assessment	3
1.2 Documents reviewed to inform this assessment	3
2. Information about the EMS	4
2.1 Overview and qualifying features	4
2.2 Conservation Objectives	5
3. Interest feature(s) of the EMS categorised as 'red' risk and overview of management	
measure(s) (if applicable)	6
4. Information about the fishing activities within the site	6
5. Test for Likely Significant Effect (LSE)	7
5.1 Table 2: Assessment of LSE	7
6. Appropriate Assessment	8
6.1 Potential risks to features	8
7. Conclusion	13
8. In-combination assessment	13
8.1 Other fishing activities	13
8.2 Other activities	14
9. Summary of consultation with Natural England	14
10. Integrity test	14
Annex 1: Reference list	15
Annex 2: Natural England's consultation advice	17
Annex 3: Site Map	18
Annex 4: Fishing activity maps	20
Annex 5: Pressures Audit Trail	23
Annex 6: WeBS Core Peak Counts Data	25

1. Introduction

1.1 Need for an HRA assessment

In 2012, the Department for Environment, Food and Rural Affairs (Defra) announced a revised approach to the management of commercial fisheries in European Marine Sites (EMS). The objective of this revised approach is to ensure that all existing and potential commercial fishing activities are managed in accordance with Article 6 of the Habitats Directive.

This approach is being implemented using an evidence based, risk-prioritised, and phased basis. Risk prioritisation is informed by using a matrix of the generic sensitivity of the sub-features of EMS to a suite of fishing activities as a decision making tool. These sub-feature-activity combinations have been categorised according to specific definitions, as red, amber, green or blue.

Activity/feature interactions identified within the matrix as red risk have the highest priority for implementation of management measures by the end of 2013 in order to avoid the deterioration of Annex I features in line with obligations under Article 6(2) of the Habitats Directive.

Activity/feature interactions identified within the matrix as amber risk require a site-level assessment to determine whether management of an activity is required to conserve site features. Activity/feature interactions identified within the matrix as green also require a site level assessment if there are "in combination effects" with other plans or projects.

Site level assessments are being carried out in a manner that is consistent with the provisions of Article 6(3) of the Habitats Directive. The aim of this assessment is to determine whether management measures are required in order to ensure that fishing activity or activities will have no adverse effect on the integrity of the site. If measures are required, the revised approach requires these to be implemented by 2016.

The purpose of this site specific assessment document is to assess whether or not in the view of Devon & Severn Inshore Fisheries and Conservation Authority (D&S IFCA) the fishing activities crab tiling have a likely significant effect on the 'intertidal mud', 'intertidal mixed sediments', 'intertidal sand & muddy sand', 'intertidal seagrass beds' and 'water column' of the Plymouth Sound & Estuaries EMS, and on the basis of this assessment whether or not it can be concluded that crab tiling will not have an adverse effect on the integrity of this EMS.

1.2 Documents reviewed to inform this assessment

- Natural England's risk assessment Matrix of fishing activities and European habitat features and protected species¹
- Reference list² (Annex 1)
- Natural England's consultation advice (Annex 2)
- Site map(s) sub-feature/feature location and extent (Annex 3)
- Fishing activity data (map(s), etc.) (Annex 4)

¹ See Fisheries in EMS matrix:

http://www.marinemanagement.org.uk/protecting/conservation/documents/ems_fisheries/populated_matrix3.xls

² Reference list will include literature cited in the assessment (peer, grey and site specific evidence e.g. research, data on natural disturbance/energy levels etc.)

2. Information about the EMS

The Plymouth Sound & Estuaries EMS is made up of the Plymouth Sound & Estuaries SAC and the Tamar Estuaries Complex SPA (Figure 1, Annex 3). Plymouth Sound and its associated tributaries comprise a complex site of marine inlets. The ria systems entering Plymouth Sound (St John's Lake and parts of the Tavy, Tamar and Lynher), the large bay of the Sound itself, Wembury Bay, and the ria of the River Yealm are of international marine conservation importance because of their wide variety of salinity conditions and sedimentary and reef habitats. The high diversity of habitats and conditions gives rise to communities both representative of ria systems, and some very unusual features, including abundant southern Mediterranean-Atlantic species rarely found in Britain (English Nature, 2000). This site crosses the border between Devon & Severn IFCA and Cornwall IFCA.

2.1 Overview and qualifying features

Plymouth Sound and Estuaries qualifies as a SAC for the following Annex I habitats as listed in the EU Habitats Directive (Natural England, 2015a):

- Large shallow inlets and bays, the key sub-features are:
 - Intertidal rock
 - Circalittoral rock
 - Infralittoral rock
 - Subtidal mud
 - Subtidal sand
 - Subtidal seagrass beds
 - Estuaries, the key sub-features are:
 - Circalittoral rock
 - Infralittoral rock
 - Intertidal mixed sediment
 - Intertidal mud
 - Intertidal rock
 - Intertidal seagrass beds
 - Lower-mid saltmarsh
 - Mid-upper saltmarsh
 - Pioneer saltmarsh
 - Subtidal mixed sediments
 - Subtidal mud
 - Subtidal sand
 - Subtidal seagrass beds
 - Transition & driftline saltmarsh
 - Upper saltmarsh
- Sandbanks which are slightly covered by seawater all the time, the key sub-features are:
 - Subtidal coarse sediment
 - Subtidal mixed sediment
 - Subtidal mud
 - Subtidal sand
 - Subtidal seagrass beds
- Atlantic salt meadows
- Mudflats & sandflats not covered by seawater at low tide, the key sub-features are:
 - Intertidal coarse sediment
 - Intertidal mixed sediments
 - Intertidal mud
 - Intertidal sand & muddy sand
 - Intertidal seagrass beds

- Reefs
 - Circalittoral rock
 - Infralittoral rock
 - Intertidal rock

Plymouth Sound and Estuaries qualifies as a SAC for the following Annex II species as listed in the EU Habitats Directive (Natural England, 2015a):

- Allis shad (*Alosa alosa*)
- Shore dock (*Rumex rupestris*)

The Tamar Estuaries Complex qualifies as a SPA under the Birds Directive for (Natural England, 2015b):

• Nationally important populations of regularly occurring Annex 1 species, Avocets (*Recurvirostra avosetta*) and Little egrets (*Egretta garzetta*), the key supporting habitats are:

- Annual vegetation of driftlines
- Coastal reedbeds
- Freshwater & coastal grazing marsh
- Intertidal mixed sediments
- Intertidal mud
- Intertidal sand & muddy sand
- Intertidal seagrass beds
- Water column
- Saltmarsh

2.2 Conservation Objectives

The site's conservation objectives which apply to the **Special Area of Conservation** and the natural habitat and/or species for which the site has been designated are to ensure that, subject to natural change, the integrity of the site is maintained or restored as appropriate, and that the site contributes to achieving the Favourable Conservation Status of its qualifying features, by maintaining or restoring:

- the extent and distribution of qualifying natural habitats and habitats of the qualifying species
- the structure and function (including typical species) of qualifying natural habitats
- the structure and function of the habitats of qualifying species
- the supporting processes on which qualifying natural habitats and the habitats of qualifying species rely
- the populations of qualifying species
- the distribution of qualifying species within the site

The site's conservation objectives which apply to the **Special Protection Area** and the individual species and/or assemblage of species for which the site has been classified are to ensure that, subject to natural change, the integrity of the site is maintained or restored as appropriate, and that the site contributes to achieving the aims of the Wild Birds Directive, by maintaining or restoring:

- the extent and distribution of the habitats of the qualifying features
- the structure and function of the habitats of the qualifying features
- the supporting processes on which the habitats of the qualifying features rely
- the populations of the qualifying features
- the distribution of the qualifying features within the site

3. Interest feature(s) of the EMS categorised as 'red' risk and overview of management measure(s) (if applicable)

- Subtidal rock and reef communities were categorised as "red" risk against all demersal towed gear and towed dredges. In January 2014 D&S IFCA introduced the Mobile Fishing Permit Byelaw, which prohibits the use of towed gear within this EMS.
- Seagrass bed communities were categorised as "red" risk against towed demersal gear, dredges, intertidal handwork, crab tiling, and digging with forks. At that time, only subtidal seagrass beds were considered as a sub-feature of the site which would not be exposed to intertidal handwork, crab tiling or digging with forks. In January 2014 D&S IFCA introduced the Mobile Fishing Permit Byelaw, which prohibits the use of towed gear within this EMS.

4. Information about the fishing activities within the site

Devon and Severn IFCA undertakes crab tile surveys every four years to determine the current number of crab tiles and to see if there have been any changes. A baseline survey of crab tiles in the EMS was undertaken in 2000/2001 and then further surveys were carried out in 2003/2004, 2012 and 2016. These surveys have identified the activity is occurring at a high level within certain areas of the EMS. The overall number of crab tiles in the SPA increased by 63% in 2012 but has since decreased by 22% in 2016, see Table 1 for more information. Annex 4, Figure 4 shows the location of crab tiles in the SPA. The material used for the majority of crab tiles consisted of plastic piping, corrugated iron and roof tiles and most had seaweed and barnacle coverage on the tiles. Most of the crab tiles were deemed to be within recent use, with the exception of some (approximately 165) that were almost buried.

Location	Estuary	2016	2012	2003/04	2000/01	Difference	Difference
	Area	Tiles	Tiles	Tiles	Tiles	(2003/04 to 2012)	(2012 to 2016)
Tavy	TAM07	0	0	0	20	0	0
Tavy	TAM08	184	181	360	284	-179	+3
Tavy	TAM09	726	816	980	442	-164	-90
Tamerton Lake	TAM10	1,129	938	470	490	+468	+191
Tamerton Lake	TAM11	0	0	0	112	0	0
Tamar	TAM12	701	1,581	344	1,068	+1,237	-880
	TOTALS:	2,740	3,516	2,154	2,416	+1,362	-776
		63% ↑	22% ↓				

Table 1 - Crab tile distribution, counts and comparison in D&S IFCA District (SPA) only; from Noble (2013) and Black (2004)

Through the IFCA's Byelaw Review process, D&S IFCA will be reviewing all byelaws relating to hand-gathering. There is the intention to create a permitting byelaw that covers hand-gathering (including crab tiling activity), which would allow the IFCA to monitor levels of this activity in the future, and adapt permit conditions to changes in effort/ environmental conditions if necessary.

Other fishing activities within the Plymouth Sound and Estuaries EMS are described in the Fishing Activity Report (Gray, 2015).

5. Test for Likely Significant Effect (LSE)

The Habitats Regulations assessment (HRA) is a step-wise process and is first subject to a coarse test of whether a plan or project will cause a likely significant effect on an EMS³.

5.1 Table 2: Assessment of LSE

1. Is the activity/activities directly connected with or necessary to the management of the site for nature conservation?	Νο				
2. What pressures (such as abrasion, disturbance) are potentially exerted by the gear type(s)	 Abrasion & disturbance of the substrate on the surface of the seabed Penetration & disturbance of the substrate below the surface of the seabed, including abrasion Physical change to another seabed type Above water noise Visual disturbance Removal of non-target species Removal of target species See Annex 5 for pressures audit trail 				
3. Is the feature potentially	Yes. there are currently no management measures				
exposed to the pressure(s)4?	prohibiting the use Complex SPA.	e of crab tiling in Tamar Estuaries			
4. What are the potential	There are 2,740 c	rab tiles within the SPA, on the Tamar,			
effects/impacts of the pressure(s)	Tamerton Lake ar	nd Tavy. Crab tiling has the potential to			
on the feature ⁵ , taking into	cause disturbance	e to the bird features and impact the			
account the exposure level?	supporting habitat	features assessed.			
5. Is the potential scale or magnitude of any effect likely to be significant? ⁶	AloneUnsure, an interaction is present between crab tiling and the feature Tamar Estuaries Complex SPA. Therefore an appropriate assessment has been carried out.				
	In-combination See section 8 for more information				
6. Have NE been consulted on this LSE test? If yes, what was NE's advice?	No, not at this sta	ge			

³ Managing Natura 2000 sites: <u>http://ec.europa.eu/environment/nature/natura2000/management/guidance_en.htm</u>

⁴ Provide overview of activity levels, including current management measures that reduce/remove the feature's exposure to the activity.

⁵ Consider the sensitivity of the feature to that pressure (where available).

⁶ Yes or uncertain: completion of AA required. If no: LSE required only.

6. Appropriate Assessment

6.1 Potential risks to features

Table 3: Summary of Impacts

Feature/Sub feature(s)	Target Attributes/ Conservation Objectives (Natural England, 2015a)	Potential pressure (such as abrasion, disturbance) exerted by gear type(s)	Potential ecological impacts of pressure exerted by the activity/activities on the feature (reference to conservation objectives)	Level of exposure of feature to pressure	Mitigation measures
Supporting habitats: - Intertidal mixed sediments - Intertidal sand and muddy sand	Extent and distribution of supporting habitat: Maintain the extent and distribution of suitable habitat which supports the feature for all necessary stages of the non- breeding/wintering period at the extent 824 ha, 14 ha and 382 ha.	 Abrasion & disturbance of the substrate on the surface of the seabed Penetration & disturbance of the substrate below the surface of the seabed, including abrasion Physical change to another seabed type 	Crab tiling would not have an effect on the extent and distribution of the sub-features assessed.	No exposure	No mitigation measures necessary
Supporting habitats: - Intertidal mud - Intertidal mixed sediments - Intertidal sand and muddy	Landscape: Maintain the area of open and unobstructed terrain around roosting and feeding sites.	 Visual disturbance Physical change to another seabed type 	Crab tiling would not obstruct line of sight on the mudflats as crab tiles are less than 30cm off the sediment when inserted at a 45° angle. The approximate area of mudflats covered in the SPA by crab tiles is 342.5m ² (if every tile had an area of 0.125m ²). Crab tile size and shape vary with the type of material used from plastic piping, roof tiles and corrugated iron. The calculation is an approximate size for the collective types used. This is a worst case scenario estimate as not all	Obstruction to the mudflats caused by crab tiling is not believed to be significant to prohibit bird features from feeding.	No mitigation measures necessary. Numbers of crab tiles are monitored every four years.

cond			crab tiles lie flat on the mudflate: most are		
Sanu			inserted at a 45° angle		
			Checken at al. (2012) found the presence of each		
			Sheenah et al. (2012) found the presence of clab		
			tiles did not appear to negatively affect shorebind		
			foraging benaviour in the Exe Estuary. Birds used		
			the pools around crab tiles for feeding and little		
			egret were seen fishing from crab tiles (Sheehan		
_			et al. 2012).		
Supporting	Food availability:	 Abrasion & 	Sheehan et al. (2010b) looked at the effects of	The SPA Toolkit general prey	Devon and
habitats:	Maintain the	disturbance of	crab tiling on three estuaries (Yealm, Erme and	types for avocet are fish,	Severn IFCA
- Intertidal	distribution,	the substrate	Avon) which had previously been unexposed to	molluscs, crustaceans,	monitors the
mud	abundance and	on the surface	crab tiles. The study manipulated sites for a	insects and worms, and for	number of crab
 Intertidal 	availability of key	of the seabed	month with controls, tiled only, trampled only and	little egret are fish,	tiles every four
mixed	food prey items for	 Penetration & 	crab tiled to determine the impact on macro-	amphibians and insects.	years. The next
sediments	little egret (fish, frogs	disturbance of	infaunal diversity. Trampling and crab tiling was		survey is due in
- Intertidal	beetles, dragonfly	the substrate	conducted three times a week. Samples were	Crab tile surveys undertaken	2020.
sand and	larvae, crickets at	below the	taken after the final day of disturbance. They	in 2016 identified 2,740 crab	
muddy	preferred sizes e.g.	surface of the	found the organic content of the sediment and	tiles within the SPA. The	Through the
sand	fish of <6cm) and	seabed,	sediment particle size was unaffected by crab	overall number of crab tiles	IFCA's Byelaw
	avocet (Gammarus,	including	tiling. Crab tiling made sediments more	from 2003/04 increased by	Review process,
	Corophium, flies,	abrasion	penetrable and infaunal assemblages differed	63% in 2012 but has since	D&S IFCA will be
	beetles, Nereis,	 Removal of 	most in the muddiest estuaries (Yealm and	decreased by 22% in 2016,	reviewing all
	Hydrobia, Cardium,	target species	Erme). Non-trampled sites (controlled and tiled	see Table 1 for more	byelaws relating
	gobies at preferred	Removal of	only) had similar measure of sediment stability	information. Annex 4, Figures	to hand-
	sizes e.g. fish or	non-target	and similar abundance to each other, whereas,	2, 3 and 4 show the location	gathering. There
	worms between 4-	species	the sediments in trampling only were least stable	of crab tiles which are namely	is the intention to
	15mm long).	эрсосэ	and had the lowest infaunal abundance. Crab	in the Tamar and the mouth	create a
	3,		tiled and trampled sites which were more stable	of the Tavy.	permitting byelaw
			than trampling only sites also had a greater	,	that covers hand-
			abundance. Sheehan et al. (2010b) suggested	Crab tiles are worked at low	aathering
			that tramping was the mechanism that	tide (mostly spring tides)	(including crab
			contributed most to the decrease in infaunal	during the day, all year round.	tiling activity).
			abundance rather than the presence of the tiles.	Usually a patch of tiles is	which would
			In the Yealm, non-trampled plots had greater	solely worked by one	allow the IFCA to
			abundances of oligochaetes, polychaetes and	individual who owns those	monitor levels of
			species of sabellid worm, gastropod, bivalve and	tiles. Crab tile owners usually	this activity in the
			shrimp (Sheehan et al. 2010b).	work their tiles part time as a	future, and adapt
				hobby or as and when they	permit conditions
			Johnson et al. (2007) examined the effects of	need bait for recreational	to changes in
			Johnson et al. (2007) examined the effects of	need bait for recreational	to changes in

	trampling from crab tiling activity on nematodes in mudflats in the Yealm Estuary. Plots were	angling. Crab tilers only collect crabs which are over	effort/ environmental
	trampled six times over a two week period which	40mm carapace width, not	conditions if
	significantly reduced nematode abundance. This	berried females and in the	necessary.
	might have been caused by meiofauna burrowing	stage of pre-ecdysis (moulting	
	deeper into the sediment. However, 12-36 hours	stage) (Sheehan et al. 2008)	
	after activity ceased, species numbers had	Moulting crabs represent 10%	
	returned to control levels. Johnson et al. (2007)	of the crabs found under crab	
	attributed the fast recovery to the dynamic nature	tiles (Sheehan et al. 2008).	
	of intertidal mudflats, which frequently experience		
	natural disturbance. Additionally, abiotic factors	Trampling extent would be	
	(grain size, total organic content and	from the shore to the area of	
	penetrability) indicated that crab tiling made no	tiles, from tile to tile and then	
	significant changes to habitat structure.	back to the shore line. These	
		footprints are visible in the	
	Crab tiles can be mistaken for rocks as they	sediment until the tide	
	provide a structural habitat and allow organisms	homogenises the sediment	
	such as seaweeds and barnacles to attach in a	again. Tiles are spread	
	typically homogenous environment. Additionally.	approximately 1m apart	
	at low tide, pools of water are often retained	(Sheehan et al. 2010b). The	
	around the crab tiles.	potential area of sediment	
		impacted from crab tiling	
	Sheehan et al. (2010a) used fixed underwater	within the SPA is	
	video cameras in tiled and non-tiled sites on	approximately 1.9 hectares.	
	Yealm estuary to determine crab distribution	An area worked is only	
	during high tide. They found crabs were	impacted by trampling for a	
	significantly more abundant in tiled sites.	small time frame and	
	Sheehan et al. (2008) assessed the effects of	recovery can be within 36	
	crab tiling on the population of the green crab	hours (Johnson et al. 2007).	
	Carcinus maenas in tiled (Plym, Teign and Exe)	Intertidal mudflat communities	
	and non-tiled (Yealm, Fowey and Salcombe)	are exposed naturally to	
	estuaries. Crabs were caught by baited drop	repeat disturbances from tidal	
	nets, sexed and measured. Tiled estuaries had	forces and currents (Johnson	
	significantly 63% more crabs than non-tiled	et al. 2007).	
	estuaries. Crab populations were found to have		
	different size structure such that tiled estuaries		
	had a smaller proportion of large crabs and a		
	smaller modal size call of 20-29mm compared to		
	30-39mm in non-tiled estuaries. The greater		

			· · · · · · · · · · · · · · · · · · ·		
			abundance of crabs in tiled estuaries could have		
			adverse effects for associated estuarine fauna.		
			Sheehan et al. (2010a) noted that oysters Ostrea		
			edulis and mussels Mytilus edulis are an		
			important part of adult C. maenus diet and		
			therefore changes in crab population could		
			potentially have an effect on the abundance of		
			their prey species.		
Annex 1	Disturbance caused	Above water	Sheehan et al. (2012) found the presence of crab	Crab tile surveys undertaken	Devon and
species:	by human activity:	noise	tiles did not appear to negatively affect shorebird	in 2016 identified 2,740 crab	Severn IFCA
- Avocet	restrict the	Visual	foraging behaviour in the Exe Estuary. Shorebird	tiles within the SPA. The	monitor the
- Little egret	frequency, duration	disturbance	species richness, abundance and species	overall number of crab tiles	number of crab
	and/ or the intensity		assemblage composition were not affected by the	from 2003/04 increased by	tiles every four
	of disturbance		presence of crab tiles, compared to areas with no	63% in 2012 but has since	years. The next
	affecting roosting,		crab tiles (Sheehan et al. 2012). Sheehan et al.	decreased by 22% in 2016,	survey is due in
	foraging, feeding,		(2012) proposed that the crab tiles provide a	see Table 1 for more	2020.
	moulting and/ or		structural habitat which can aggregate potential	information. Annex 4, Figures	
	loafing birds so that		prey for bird species, such as crabs and	2, 3 and 4 show the location	Through the
	they are not		gastropods attracting feeding shorebirds.	of crab tiles which are namely	IFCA's Byelaw
	significantly			in the Tamar and the mouth	Review process,
	disturbed.		Several studies have found that disturbance can	of the Tavy. Crab tiles are laid	D&S IFCA will be
			have an effect on population levels and	fairly close to the shore as the	reviewing all
			distribution of species:	sediment is extremely soft,	byelaws relating
			Liley et al. (2011) states that increased	meaning there is a large	to hand-
			disturbance can lead to reduced breeding	expanse of mudflat to the low	gathering. There
			success. Disturbance can also result in otherwise	water line un-used by crab	is the intention to
			suitable habitat being unused.	tilers.	create a
					permitting byelaw
			This is further explained in Hockin et al. (1992),	Crab tiles are worked at low	that covers hand-
			which shows disturbance can have an effect on	tide (mostly spring tides), two	gathering
			breeding success through several factors e.g.	hours either side of low,	(including crab
			nest abandonment, increased mortality of eggs	during the day, all year round.	tiling activity),
			due to predation & increased mortality of young	Usually a patch of tiles is	which would
			through reduced feeding. Disturbance can reduce	solely worked by one	allow the IFCA to
			use of sites by birds, and can affect nest site	individual who owns those	monitor levels of
			choice, having a negative effect on population	tiles. Crab tile owners usually	this activity in the
			density. It can also have a negative	work their tiles part time, as a	future, and adapt
			effect on energy budgets – time spent flying,	hobby or as and when they	permit conditions
			reduces time spent feeding.	need bait for recreational	to changes in

			Goss-Custard (2016a) concluded that disturbance caused by crab collecting in the area studied on the Exe was "trivial and certainly nowhere near large enough to have a serious impact on the birds' chances of surviving the winter in good condition". The SPA Toolkit assessed the little egret and avocet from WeBS alerts as having no site specific decline. Annex 7 shows the peak counts of WeBS core data within the area in which crab tiles are laid, Figure 7. Five year peak counts of little egret and avocet are 11.6 and 69.6 respectively, which make up 15% and 20% of the Tamar Estuaries Complex SPA population that use the area/ sector (Table 2 and Table 3). The sector in Figure 7 encompasses a large area in relation to the areas currently used for crab tiling. Therefore, only a minor proportion of the total bird peak counts, which are in the vicinity of crab tiles, would be displaced by the presence of crab tilers.	usually a slow, solitary and quiet process (Goss-Custard & Verboven, 1993). The amount of time a crab tiler is on an estuary is for an average of 90 minutes (Goss- Custard, 2016). Disturbance would cause a temporary change in distribution and reduction in numbers where crab tiles are being worked. The extent of disturbance from human presence would be a tiler walking from the shore to the area of tiles, from tile to tile and then back to the shore line. Tiles are spread approximately 1m apart (Sheehan et al. 2010b). The area of mudflat exposed to crab tiling, and therefore potential disturbance within the SPA is approximately 1.9 hectares.	environmental conditions if necessary.
Annex 1 species: - Avocet - Little egret	Abundance: Maintain the size of the non-breeding population at a level which is above 102 for little egret and 194 for avocet, whilst avoiding deterioration from its current level as indicated by the latest mean peak count or equivalent	 Above water noise Visual disturbance Removal of target species 	See above rows	See above rows	See above rows

7. Conclusion

Crab tiling occurs at a high level on the mudflats within the SPA, with 2,740 crab tiles on the Tamar, Tamerton Lake and the mouth of the Tavy. The literature cited in the appropriate assessment has indicated that crab tiles do not change the habitat structure of the supporting habitats, with there being no change in total organic carbon and sediment grain size. Trampling causing penetrability of the sediment varied with Johnson et al. (2007) finding no difference and Sheehan et al. (2010b) found trampled plots where less stable and more penetrable. However, crab tiles do increase habitat complexity by allowing species such as seaweeds and barnacles to colonise a previously homogenous environment which may even attract feeding birds.

Trampling from crab tiling was found to lower infaunal abundance of nematodes, oligochaetes, polychaetes and species of sabellid worm, gastropod, bivalve and shrimp (Sheehan et al. 2010b; Johnson et al. 2007). Johnson et al. (2007) found that up to 36 hours after the activity ceased, species abundance returned to control levels. Recovery of intertidal mudflat communities is thought to be rapid as they are naturally exposed to repeat disturbances from tidal forces and currents (Johnson et al. 2007). Sheehan et al. (2012) found birds used the pools around crab tiles for feeding and little egret were seen fishing from crab tiles (Sheehan et al. 2012).

Areas of crab tiles are worked part time by their owners at spring low tides. Crab tilers are solitary and on the shore for approximately 90 minutes. Disturbance is only from the presence of crab tilers during this time. This disturbance may result in a temporary change in distribution and abundance of birds in vicinity of the crab tiles worked.

Crab tile numbers are monitored every four years with the next survey due in 2020. Through the IFCA's Byelaw Review process, D&S IFCA will be reviewing all byelaws relating to hand-gathering. There is the intention to create a permitting byelaw that covers hand-gathering (including crab tiling activity), which would allow the IFCA to monitor levels of this activity in the future, and adapt permit conditions to changes in effort/ environmental conditions if necessary. At the current number of crab tiles, the effect of removal of crabs and trampling to the sediment is not thought to significantly affect the presence, distribution and communities of the supporting habitats. Food availability and disturbance to the bird features will not cause long term change in distribution or permanent reduction in numbers where crab tiles are laid.

8. In-combination assessment

8.1 Other fishing activities

The following fishing activities are either occurring or have not been able to have been ruled out as occurring in the Plymouth Sound and Estuaries EMS.

Handworking – There are no records of this activity taking place commercially but it has not been able to be ruled out. Therefore no in-combination effect thought to be possible.

Digging with forks - Activity is occurring within Plymouth Sound and Estuaries EMS. Digging with forks has not yet been assessed by D&S IFCA, therefore the in-combination assessments will be carried out at a later date.

Shrimp push nets - There are no records of this activity taking place but it has not been able to be ruled out. Therefore no in-combination effect thought to be possible.

Pots/ creels – Activity thought to only occur in the subtidal and not believed to interact with features assessed. Therefore no in-combination effect thought to be possible.

Cuttlepots & fishtraps - There are no records of these activities taking place but they have not been able to be ruled out. Therefore no in-combination effect thought to be possible.

Commercial diving - Activity not believed to be occurring/ occurring at a very low level. Therefore no in-combination effect thought to be possible.

Purse seine - Activity occurs in the subtidal and not believed to interact with features assessed. There are no records of this activity taking place but it has not been able to be ruled out. Therefore no in-combination effect thought to be possible.

Beach seine/ ring nets - There are no records of beach seine nets but it has not been able to be ruled out. Ringnets occur in the subtidal and not believed to interact with features assessed. Therefore no in-combination effect thought to be possible.

Drift, gill, trammel & entangling nets - Activity thought to only occur in the subtidal and not believed to interact with features assessed. Therefore no in-combination effect thought to be possible.

Fyke and stakenets - There are no records of these activities taking place but they have not been able to be ruled out. Therefore no in-combination effect thought to be possible.

Longlines - There are no records of these activities taking place in the intertidal but they have not been able to be ruled out. Therefore no in-combination effect thought to be possible.

Handlines, Jigging and trolling - There are no records of these activities taking place in the intertidal but they have not been able to be ruled out. Therefore no in-combination effect thought to be possible.

D&S IFCA concludes there is no likelihood of significant adverse effect on the interest features from in-combination effects with other fishing activities addressed within section 8.1.

8.2 Other activities

Plymouth Sound and Estuaries EMS is a busy site, with other commercial ongoing plans/projects from different sectors where impacts could combine.

However, currently there are no known proposed plans or projects in Plymouth Sound and Estuaries EMS which could theoretically interact with the intertidal sub-features addressed.

Other*:* The impact of future plans or projects will require assessment in their own right, including accounting for any in-combination effects, alongside existing activities.

D&S IFCA concludes there is no likelihood of significant adverse effect on the interest features from in-combination effects with other plans or projects addressed within section 8.2.

9. Summary of consultation with Natural England

N/A Natural England has not been consulted at this stage.

10. Integrity test

It can be concluded that crab tiling, alone or in-combination, within Tamar Estuaries Complex SPA does not adversely affect bird features and their supporting habitats assessed and that the conservation objects can be met. Management measures are not currently in place, however, Devon and Severn IFCA aim to implement a permitting byelaw that will cover hand-gathering (including crab tiling activity).

Annex 1: Reference list

Black, G (2004) Report on surveys in 2003/04 of crab tiling activities on Devon's estuaries, and comparison with 2000/01 crab tile survey data. Devon Biodiversity Records Centre, Shirehampton House, 35-37 St David's Hill, Exeter, EX4 4DA

BTO (2016) Tamar Estuary Sector 5 (11468). Available from: <u>http://app.bto.org/websonline/public/gpub-</u> <u>boundary.jsp?currentZoom=9&loclabel=11468_Tamar%20Estuary%20(North)%20-</u> <u>%20Sector%205~SX456603¤tArea=2¤tCent=(50.4021193904517,%20-</u> <u>4.8171154758395005)</u> [Accessed: 05/01/2017]

English Nature (2000) PLYMOUTH SOUND AND ESTUARIES: European Marine Site. English Nature's advice given under Regulation 33(2) of the Conservation (Natural Habitats &c.) Regulations 1994

Goss-Custard, J.D. (2016) Disturbance of shorebirds by crab collectors in the voluntary sensitive area, Shutterton, Exe estuary. Unpublished report.

Goss-Custard, J.D. and Verboven, N (1993) Disturbance and feeding shorebirds on the Exe estuary. Wader Study Group Bulletin, 68: 59-66.

Gray, K (2015) Fishing Activities Currently Occurring in the Plymouth Sound and Estuaries European Marine Site (SAC and SPA), Devon and Severn IFCA Report

Hockin, D., Ounsted, M., Gorman, M., Hill, D., Keller, V., & Barker, M. A. (1992) Examination of the effects of disturbance on birds with reference to its importance in ecological assessments. *Journal of Environmental Management* **36**: 253-286

Johnson, G.E.L., Attrill, M.J., Sheehan, E.V. and Somerfield, P.J., (2007) Recovery of meiofauna communities following mudflat disturbance by trampling associated with crab-tiling. Marine Environmental Research, 64: 409-416.

Liley, D., Cruickshanks, K., Waldon, J., & Fearnley, H. (2011) Exe Estuary Disturbance Study. Footprint Ecology.

MAGIC (2015) Multi-Agency Geographic Information for the Countryside interactive map <u>http://magic.defra.gov.uk/magicmap.aspx?startTopic=magicall&chosenLayers=sacIndex&sqgridref</u> <u>=SX472506&startscale=500000</u>

Natural England (2015a) Marine conservation advice for Special Area of Conservation: Plymouth Sound and Estuaries (UK0013111)

Natural England (2015b) Marine conservation advice for Special Protection Area: Tamar Estuaries Complex (UK9010141)

Noble (2013) Devon & Severn IFCA report: Tamar Estuaries Complex Crab Tile Survey 2012

Richards, S. (2015) A summary report for little egret and avocet within the Tamar Estuaries Complex SPA and surrounding area. Report by placement student with Natural England. Sheehan, E.V., Thompson, R.C., Coleman, R.A., and Attrill, M.J. (2008) Positive feedback fishery: Population consequences of 'crab-tiling' on the green crab *Carcinus maenas*. Journal of Sea Research, 60: 303-309

Sheehan, E.V., Coleman, R.A., Attrill, M.J., and Thompson, R.C. (2010a) A quantitative assessment of the response of mobile estuarine fauna to crab-tiles during tidal immersion using remote underwater video cameras. Journal of Experimental Marine Biology and Ecology, 387: 68-74

Sheehan, E.V., Coleman, R.A., Thompson, R.C., and Attrill, M.J. (2010b) Crab tiling reduces the diversity of estuarine infauna. Marine Ecology Progress Series, 411: 137 -148

Sheehan, E.V., Attrill, R.C., Thompson, R.C., and Coleman, R.A. (2012) Changes in shorebird behaviour and distribution associated with an intertidal crab fishery. Aquatic conservation: marine and freshwater ecosystems, 22: 683-694.

Annex 2: Natural England's consultation advice N/A

Annex 3: Site Map

Figure 1 - Area of SAC (blue hatched) and SPA (Orange hatched) (MAGIC, 2015)

Figure 2 - Tamar Estuaries Complex SPA and WeBS data for Avocet density (in November, December, January and February 1997-1998 & 2002-2003).

Figure 3 - Tamar Estuaries Complex SPA and WeBS data for Little Egret density (in November, December, January and February 1997-1998 & 2002-2003).

Annex 4: Fishing activity maps

Figure 4 - Crab tile locations on the Tamar SPA (data from Noble (2013) and Black (2004)).

Figure 5 - Tamar Estuaries Complex SPA, 2016 crab tiles and WeBS data for Avocet density (in November, December, January and February 1997-1998 & 2002-2003).

Figure 6 - Tamar Estuaries Complex SPA, 2016 crab tiles and WeBS data for Little Egret density (in November, December, January and February 1997-1998 & 2002-2003).

Annex 5: Pressures Audit Trail

	Bird features		SPA Supporting habitat(s)			
Pressure(s) for shore-based activities	Avocet	Little egret	Intertidal mixed sediments	Intertidal mud	Intertidal sand and muddy sand	Screening Justification
Above water noise	S	S				IN – Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure
Abrasion/disturbance of the substrate on the surface of the seabed			S	S	S	IN – Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure
Collision ABOVE water with static or moving objects not naturally found in the marine environment (e.g., boats, machinery, and structures)	S	S				OUT – Pressure not thought to be associated with activity.
Deoxygenation			NS	NS	NS	OUT – Insufficient activity levels to pose risk of large scale pollution event
Habitat structure changes – removal of substratum (extraction)			S	S	S	OUT – Pressure not thought to be associated with activity.
Hydrocarbon & PAH contamination. Includes those priority substances listed in Annex II of Directive 2008/105/EC.	IE	IE	NS	NS	NS	OUT - Insufficient activity levels to pose risk of large scale pollution event
Introduction of light	S	S				OUT – Insufficient activity levels to pose risk at level of concern
Introduction or spread of non- indigenous species	NS	NS	S	IE	S	OUT - the activity operates in local area only so risk considered extremely low
Litter	IE	IE	IE	IE	IE	OUT – Insufficient activity levels to pose risk at level of concern
Penetration and/or disturbance of the substrate below the surface of the seabed, including abrasion			S	S	S	IN – Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure
Removal of non-target species	S	S			S	IN – Mortality of prey from trampling
Removal of target			S	S	S	IN – Removal of target species (crab) associated with fishing activity
Synthetic compound contamination (incl. pesticides, antifoulants,	IE	IE	NS	NS	NS	OUT - Insufficient activity levels to pose risk

pharmaceuticals). Includes those priority substances listed in Annex II of Directive 2008/105/EC.						of large scale pollution event
Transition elements & organo-metal (e.g. TBT) contamination. Includes those priority substances listed in Annex II of Directive 2008/105/EC.	S	S	NS	NS	NS	OUT - Insufficient activity levels to pose risk of large scale pollution event
Visual disturbance	S	S				IN - Need to consider spatial scale/intensity of activity to determine likely magnitude of pressure

Annex 6: WeBS Core Peak Counts Data

Figure 7 – Tamar Estuary North, Sector 5, Site code 11468 (BTO, 2016)

Table 2 – Little egret peak counts for the Tamar Estuary Complex SPA, each year (July to June) from the British Trust for Ornithology Wetland Bird surveys (BTO WeBS) core counts data (Richards. 2015).

Little egret	2009/10	2010/11	2011/12	2012/13	2013/14	5 Year mean		
Tamar SPA annual peak count	70	97	77	58	85	77.4		
Sector 5 annual peak count	12	9	7	11	19	11.6		
Percentage of the Tamar Estuaries Complex SPA little earet population using sector 5 is: 15%								

Table 3 - Avocet peak counts for the Tamar Estuary Complex SPA, each year (July to June) from the British Trust for Ornithology Wetland Bird surveys (BTO WeBS) core counts data (Richards, 2015).

Avocet	2009/10	2010/11	2011/12	2012/13	2013/14	5 Year mean
Tamar SPA annual peak count	396	218	453	423	216	341.2
Sector 5 annual peak count	40	125	42	43	98	69.6
Percentage of the Tamar Estuaries Complex SPA avocet population using sector 5 is:						20%