Exe Estuary Cockle Stock Assessment 2010 - 2024

Sarah Curtin
Environment Officer
Devon and Severn Inshore Fisheries and Conservation Authority

Research Report March 2025

Contents:

2. Methods 5 2.1 Survey design 5 2.2 Data analysis 6 3. Results 7 4. Discussion 17	1.	Introduction	3
2.1 Survey design	2.	Methods	5
2.2 Data analysis. 6 3. Results. 7 4. Discussion 17			
3. Results		· · · ·	
	4.	Discussion	17
References	R	eferences	20

Version control history									
Author	Date	Date Comment							
S. Curtin	04/12/2024	Draft report	0.1						
	March	Revised following comments by J	0.2						
	2025	Stewart							
	27/12/2025	Report finalised by JS	1.0						

1. Introduction

The Exe Estuary is one of the most highly designated nature conservation sites in Devon and Severn Inshore Fisheries and Conservation Authority's (D&S IFCA's) District. It is a Ramsar Site, a Special Protection Area (SPA), and a Site of Special Scientific Interest (SSSI), and encompasses over 3,000 hectares of diverse aquatic and terrestrial habitats (EEMP, 2020). The Exe Estuary SPA (Figure 1) includes marine areas (i.e. land covered continuously or intermittently by tidal waters) as well as land which is not subject to tidal influence. The SPA was designated as the Exe Estuary supports internationally important populations of birds such as the Slavonian grebe and the Avocet, as well as Brent goose, dunlin, oystercatcher, blacktailed godwit and grey plover. Subfeatures have been identified which describe the key habitats within the European Marine Site necessary to support the birds that qualify within the SPA (D&S IFCA, 2018; Natural England, 2020). Use of the site by birds varies seasonally, with different areas being favoured over others at certain times of the year. Several thousand oystercatchers overwinter on the Exe Estuary and although mussels are their main food source, some will also feed on cockles, as well as winkles and ragworms (Goss-Custard and Verboven, 1993).

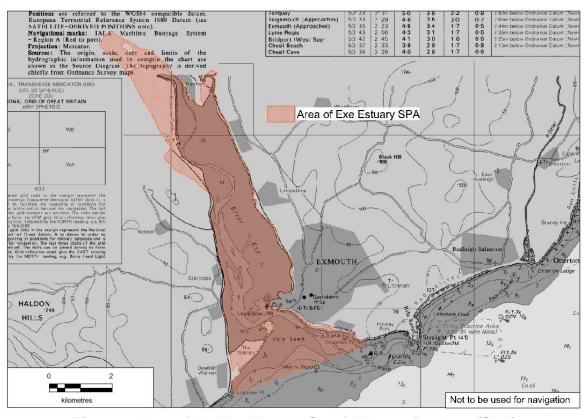


Figure 1: Area of the Exe Estuary Special Protection Area (SPA)

Cockles, *Cerastoderma edule*, are active suspension feeders. They can grow up to 5 cm in length and growth lines are prominent. Cockles are found on clean sand, muddy sand, mud or muddy gravel from the middle to lower intertidal, sometimes subtidally and are often abundant in estuaries. They inhabit the top 5 cm of surface of sediments and can tolerate changes in salinity.

D&S IFCA began assessing cockle stocks in 2010 on Cockle Sands, near Exmouth, to determine whether a sustainable cockle fishery could be established. The effects of harvesting cockles on the macrofauna, cockle populations and sediment parameters within the Exe Estuary were assessed by two masters students (Hulme, 2009; Hulme and Lee, 2010; Lee, 2010). The results concluded that the eco-elevator harvester dredge did not have an impact, meaning the fishery was permitted. However, due to a mass mortality of cockles on the Cockle Sands area of the Exe Estuary in 2011,

the fishery could not continue. The stock assessment was repeated three times in 2011 and twice in 2012 to monitor the cockle density levels. As well as this, Cefas investigated the mortality event by screening for diseases to try to determine the cause. No notifiable diseases were found but the parasite profile indicated elevated presence of the haplosporidian *Minchinia spp* and the trematode *Himasthla spp*. Both can cause the cockle's shell to open (gaping) and death.

Due to the lack of a viable cockle fishery on the Exe the Cockle Sands bed was declassified as a harvesting area, and there are currently no classified harvesting areas for cockles on the Exe Estuary (Cefas, 2020). There is some small-scale recreational gathering of cockles on the estuary, which is unregulated.

This report provides details of the autumn cockle surveys carried out by D&S IFCA between 2010 and 2024. The results of these surveys will help inform future management of the public cockle bed and quantify the availability of cockles as a food source for the bird assemblages within the Exe Estuary SPA.

2. Methods

2.1 Survey design

Surveys were conducted annually between 2010–2018 and then every two years since (e.g. 2020, 2022, 2024). Each survey is completed in one day between September and December at low water spring tides. The same survey stations (points that are approximately 115 m x 115 m apart) were sampled each year (Figure 2). Additional stations were added to the survey in 2017 to cover a wider extent south of Cockle Sands and to capture areas where hand-gathering for cockles occurs (Figure 2).

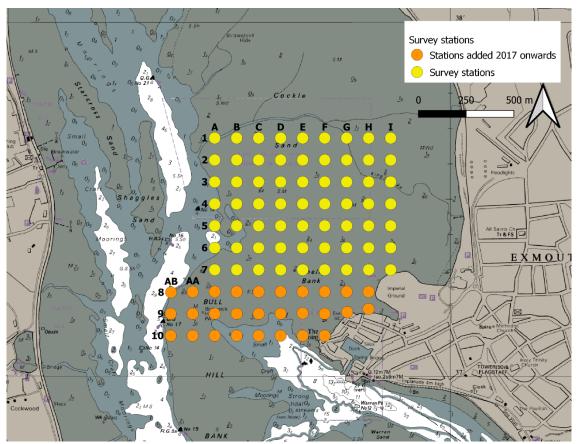


Figure 2 - Exe Estuary cockle survey stations. Some sites are (in)accessible, and these can vary between surveys.

Each survey station was located using a handheld GPS. Once located, a $0.1m^2$ quadrat was randomly placed within 10m of the target position for the station. Using a trowel, the sediment was dug out of the quadrat (to approximately the depth of the quadrat, ~ 6 cm) into a sieve, which was then sifted in water nearby (Figure 3). The cockle(s) were put into a sample bag with a label of the station name (one bag per station). If no cockles were found or the station was unable to be surveyed it was noted.

Figure 3 – Photos showing the cockle sampling method. (a) a 0.1m² quadrat is randomly placed within 10m of the target position for the sampling station, where sediment is dug out of the quadrat and placed in a sieve. (b) The sediment is sifted in water so that (c) the contents of the sieve are visible.

For each station sample, all cockles were measured by callipers to the nearest millimetre for length and width (Figure 4).

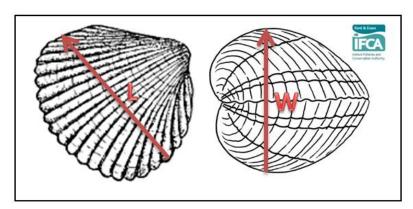


Figure 4 - Cockle length (L) and width (W) measurements.

For each station sample, after measuring, cockles were sorted into age classes by determining how many annual growth rings were present on the shell. Growth rings usually appear each winter (0 rings = current year, 1 ring = 1st winter /1 year, 2 rings = second winter/ 2 years and so on). Each year group from that station was weighed separately (to the nearest 1g) and recorded. This was repeated for all station samples and once finished all the cockles were returned to the estuary.

2.2 Data analysis

R v3.6.1 or later (R Core Team, 2020) and QGIS v3.1 or later (QGIS, 2020) were used for data analyses.

Although there is no minimum size limit applied to cockles in the D&S IFCA's District, the results presented in this report divide the stocks into two size groups (cockles that are 15 mm length and over and those that are under 15 mm length). The suggested minimum size at maturity for cockles is 15mm (Tyler-Walters, 2007). These size groupings are therefore sometimes referred to in the report as "adult" (≥ 15 mm) and "juvenile" (< 15 mm) stocks, but it is important to note that cockle size and maturity can be influenced by several factors in addition to age. These size categories do, nevertheless, give an indication of the overall condition and structure of the stock.

To visualise the variation in density across the sample sites in each year, the density of cockles at each sample location was plotted on a map using Inverse Distance Weighted (IDW) interpolation of per station density. For 2011-2022 this was calculated on all sampling stations whether cockle was

present or not. In 2024, density across the stations only where cockle were present were visualised using IDW interpolation (distance coefficient 2, pixel size 0.00005) around a buffer of 57.5m (half of the distance between stations) from the sampled stations. Differences in the size frequency distributions (length and width) of cockles were visualised using a histogram and the median length of cockles at each sample location was plotted on a map to visualise variation in the average size of cockles across survey locations.

Total biomass of cockles across the total bed area (64 ha pre-2017, and 89 ha from 2017 onwards) was estimated by scaling the mean cockle weight per sampled station (0.1m²) (whether cockle was present or not) to the total cockle bed area. Any stations which could not be surveyed were not included in the calculation, but the calculation assumes a homogeneous density across the whole bed (including sampled and non-sampled areas). Only data from 2014 onwards were used for biomass calculations.

3. Results

The total number of stations surveyed varied each year (Table 1) as the number and location of inaccessible stations vary yearly and stations were added for 2017 onwards. In each year between 52.7 and 88.9% of the possible survey stations were surveyed, with the variation largely attributable to access difficulties associated with the tide and position/depth of the main water channel. Table 1 provides a summary of the number of samples taken across all stations for all years surveyed. A total of 23 survey stations were consistently sampled across all years.

Table 1 – Number of stations surveyed/ not surveyed and number of stations where cockles were present in each year on the Exe Estuary. The total number of potential stations was 63 from 2010 – 2016, and this increased to 91 from 2017 onwards to cover a wider extent south of Cockle Sands and to capture areas where hand-gathering for cockles occurs.

	or occine carries and to captain and the miner of maria gamering						.g .c. ccccc ccca.c.					
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2020	2022	2024
Number of												
stations surveyed	42	43	52	50	52	50	56	61	63	48	66	52
Number of												
stations with												
cockles present	42	43	35	45	37	43	46	46	46	37	49	35
Number of												
stations not												
surveyed	21	20	11	13	11	13	7	30	28	43	25	39

The density of adult cockles has declined since the surveys began in 2011 (Figure 5a). In addition to the general decline, there was high variability in average adult cockle density across the bed between 2011–2014, after which the yearly average has remained relatively stable (Figure 5a). There was high variation in total cockle density between survey stations (Figure 6a & 6b), although the highest densities seem to be consistently found in either the centre or north-east corner of the surveyed stations, with 2024 being the exception. The highest densities were located around the centre and south east edge (Figure 6b), similar to the pattern observed in 2013 (Figure 6a). The average density of juvenile cockles appears to be more variable across the surveyed years than that of adult cockles but has increased since 2020 (Figure 5b).

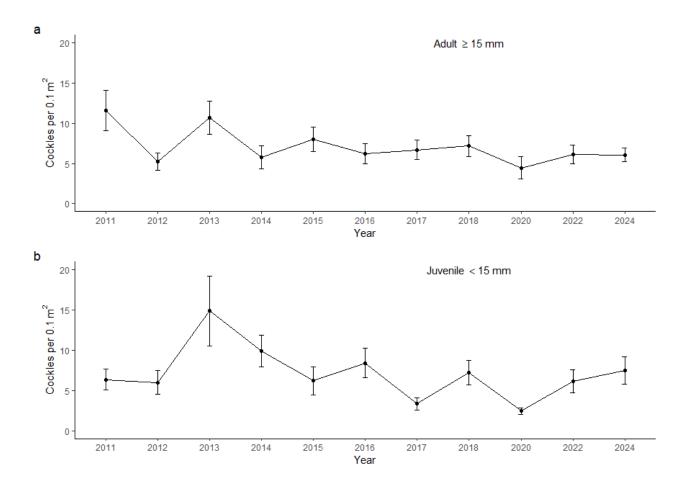


Figure 5 – Mean density (±SE) of (a) adult cockles ≥15 mm and (b) juvenile cockles <15 mm on the Exe Estuary from 2011-2024.

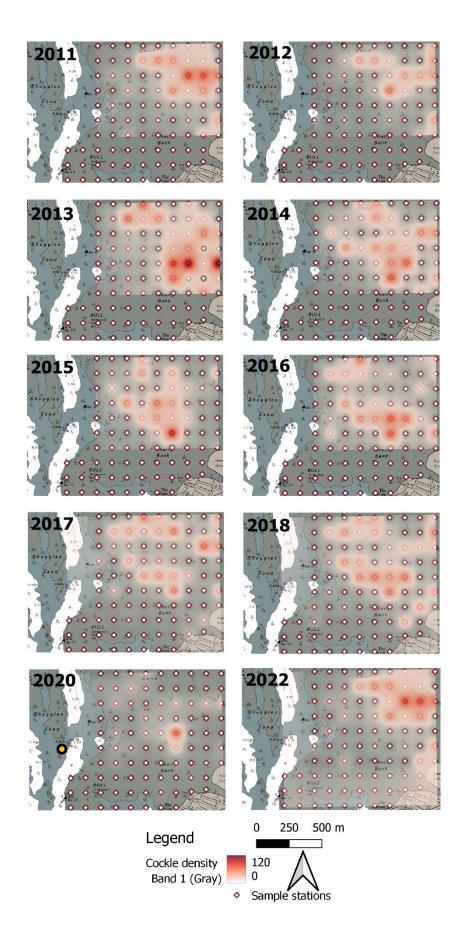


Figure 6a: Cockle density (number of cockles per 0.1m² quadrat) on the Exe estuary in autumn 2011–2022 mapped using Inverse Distance Weighted interpolation on all surveyed stations.

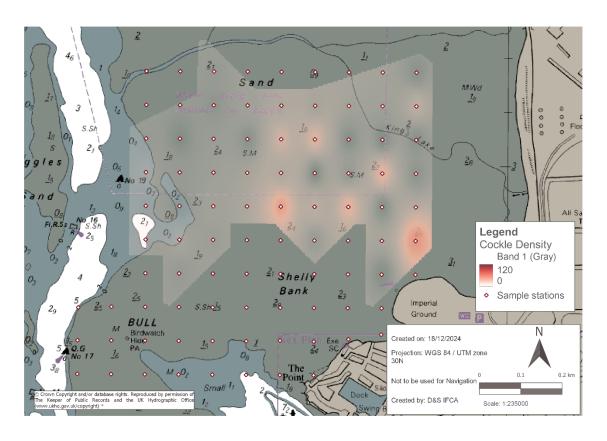


Figure 7b: Cockle density (number of cockles per 0.1m² quadrat) on the Exe estuary in autumn 2024. Mapped using Inverse Distance Weighted interpolation based around a buffer of 57.5m (half of the distance between stations) on the stations sampled where cockle were present. * www.ukho.gov.uk/copyright

The average length of cockles across all survey stations appears to vary year on year, but there is no clear increase or decrease in average cockle lengths over time (Figure 8). The shapes of the frequency distributions of cockle length and width (Figure 9 & Figure 10) show some variations across years. In particular, there are some years where there appears to be a bimodal distribution (distribution with two clear peaks) in cockle lengths and widths (e.g. 2012, 2014, 2016, 2018, 2020, 2024), whereas other years (intervening years) show more of a unimodal distribution (distribution with one peak). The average length of cockles varies between sample locations (Figure 11). In particular, the average size of cockles tends to be smaller in the centre of the survey area, whereas the average length tends to be larger closer to the edges of the survey area, particularly in the south-west and north-east sampling stations. From 2011-2024 it appears the survey stations with the highest densities of cockles have a lower average size of cockles (Figure 6a &b, Figure 11) however, it was not possible to test this statistically as the data did not satisfy the prerequisites for modelling with generalised linear (mixed) models.

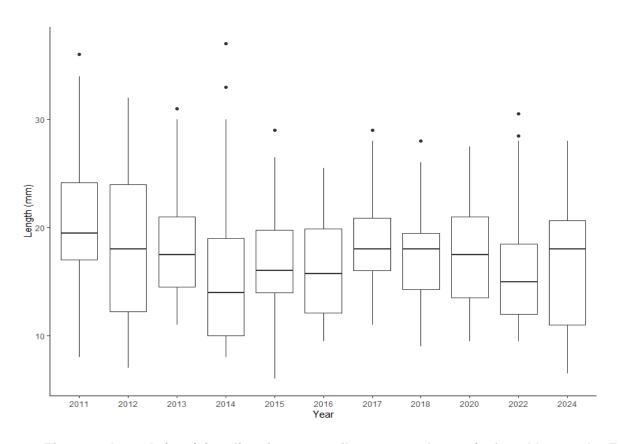


Figure 8: Length (mm) (median, inter-quartile range and range) of cockles on the Exe estuary from 2011–2024.

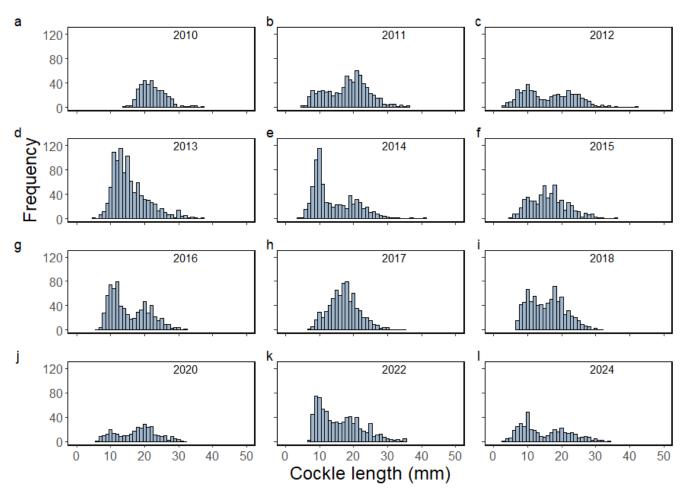


Figure 9: Frequency of cockle lengths (mm) in each survey year on the Exe Estuary.

Juvenile cockles were not measured in 2010

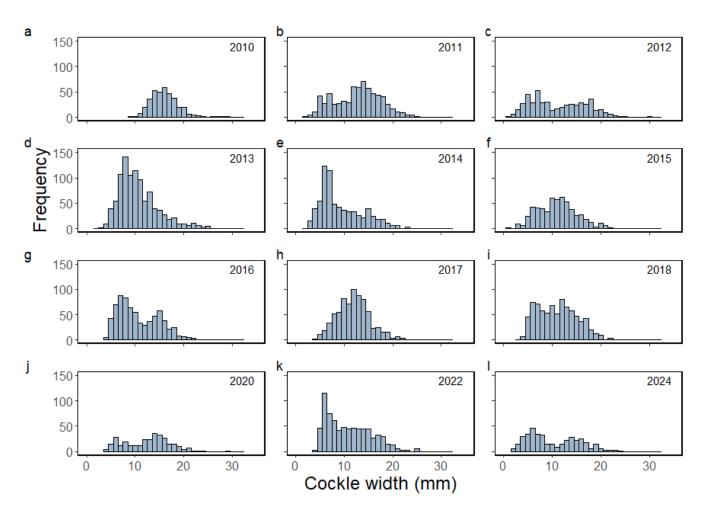


Figure 10: Frequency of cockle widths (mm) in each survey year on the Exe Estuary.

Juvenile cockles were not measured in 2010

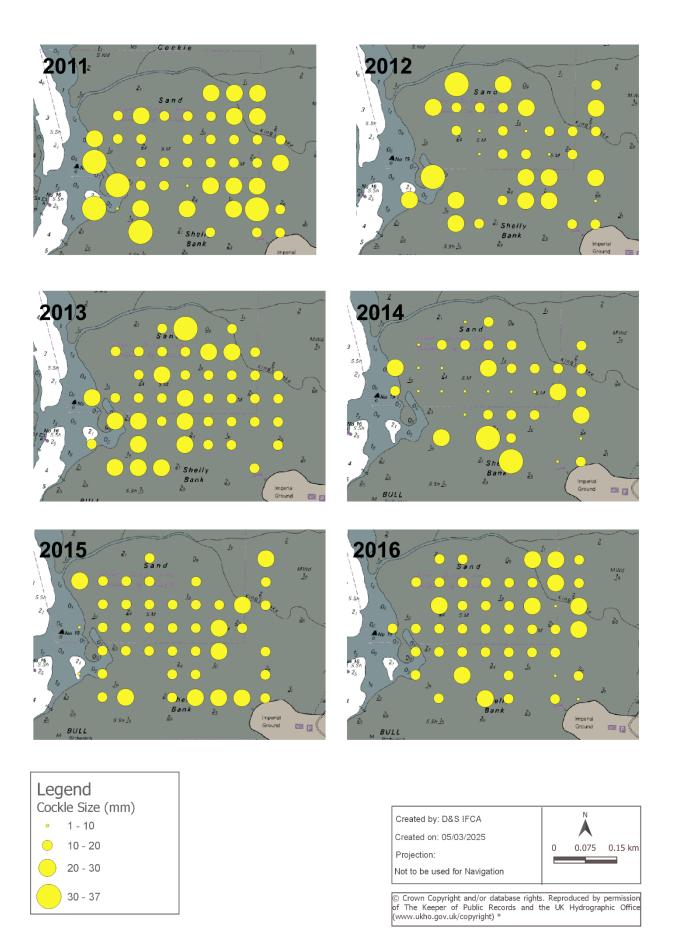


Figure 11: Median cockle size (mm) at each sampling station on the Exe Estuary in autumn 2011–2016. Sampling sites that were not surveyed or that contained no cockles are not shown on the map. * www.ukho.gov.uk/copyright

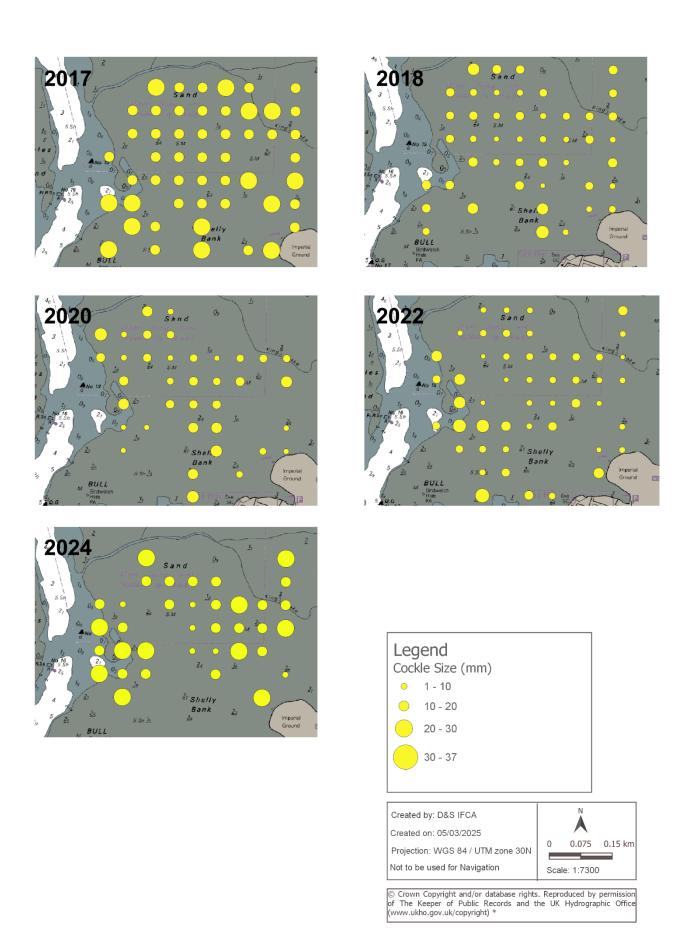


Figure 12: Median cockle size (mm) at each sampling station on the Exe Estuary in autumn 2017–2024. Sampling sites that were not surveyed or that contained no cockles are not shown on the map. * www.ukho.gov.uk/copyright

The total tonnage of cockles across the surveyed area in 2024 was 151 tonnes (Figure 13). This represents an apparent decrease in total tonnage of around 25% since the 2022 survey, where total biomass was estimated as 201 tonnes. Note that the tonnage calculation methods have been updated since the 2022 report, so the equivalent figure in previous reports will not be comparable to Figure 11. The number of cockles in each year class have declined in the 2024 surveys compared to 2022 survey, apart from the year 0 cohort which has increased slightly. In addition, older cockles in the year 5 and 6 cohort were not observed during the 2024 survey (Figure 12).

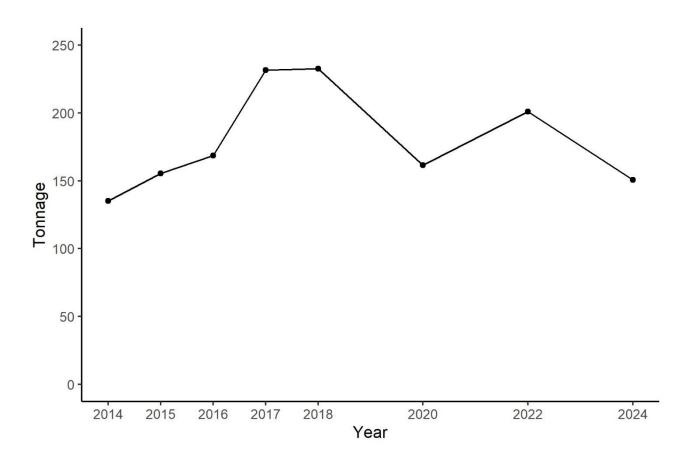


Figure 13: Total tonnage of cockles across the total cockle bed (64 ha pre-2017, and 89 ha 2017 onwards) 2014–2024.

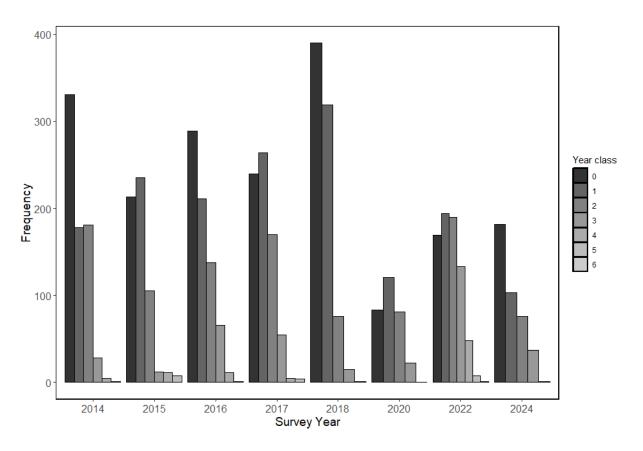


Figure 14: Number of cockles in each year class for each survey year. Year classes are determined by counting the number of growth rings on a cockle's shell (0 rings = year 0, 1 ring = year 1, etc).

4. Discussion

D&S IFCA has carried out autumn cockle surveys on Cockle Sands since 2010. This report monitors the change in density and average size of cockles across cockle sands on the Exe Estuary between 2010 and 2024 and discusses the implications for the birds that use the cockles as a prey source and the users of the estuary who gather cockles recreationally.

Although a small apparent decline in total adult cockle density was detected across the survey locations in the previous report between 2011–2020 (an average of approximately 3% per year), the addition of data from the 2022 and 2024 surveys shows that adult cockle density on the estuary seem to be relatively stable between 2014–2024. Cockle density between sample sites still remains highly variable. This highlights the importance of accounting for or considering the variation in cockle density across survey sites when conducting analysis or interpretation of data. There appears to be larger fluctuations in the densities of juvenile cockle, but this should be interpreted with care as it is not possible to statistically control for variation in the surveyed sample stations. However, the apparent peak in juvenile cockle density in 2013, and the juvenile-heavy size frequency distribution in 2013 suggests that 2013 could have been a strong year for recruitment of cockles on the Exe Estuary.

There was a mass mortality event of cockles in 2011, which was caused by elevated levels of two parasites that affect the cockle's adductor muscle and preventing closure of the shell, leading to death. A further mortality event is thought to have occurred in 2014 after the winter storms (which occurred between mid-December 2013 through to mid-February 2014), resulting in depleted oxygen levels causing estuary-wide morality of all shellfish in the intertidal (Pers. comm. Blood-Smyth, 2017). These storms caused a significant loss of mussels from Bull Hill (near Cockle

Sands). Despite these storms, and the corresponding loss of other bivalves (e.g. mussels) from the area, cockle densities do not seem to have been affected as dramatically. There appears to be some years with strong recruitment, particularly in 2014, 2016 and 2018 (highlighted by the variation in size frequency distributions and discussed below).

The variation in cockle size frequency distributions observed in this report (i.e. alternating bimodal and unimodal distributions across years) could be due to a number of reasons. Cockles are thought to have a prolonged period of reproduction, probably between May–June, annually. It is therefore likely that a particularly strong recruitment of juveniles would not be highlighted with survey data until the following year as surveys are usually carried out in October. A cockle is likely to become sexually mature at 18 months (Tyler-Walters, 2007), which means a peak in juveniles following a strong recruitment year, may not be ready to reproduce in the following year. This may lead to the alternating pattern of bimodal and unimodal size distributions across years that have been observed in this report.

However, it is also important to consider the possible variation in cockle size across years that arises from the different sampling stations that are surveyed each year. Both cockle density and size seem to show high variation between sampling locations within the survey site. Hancock and Franklin (1972) showed that local variability in growth rate can occur within a site between areas separated by relatively short distances. It is clear from the maps showing the average size of cockles at each sampling station in each year that there is variation in cockle sizes over relatively short distances within the survey area. It appears the survey stations with the highest densities of cockles have a lower average size of cockles (Figure 6a & 6b and Figure 11).

Evidence from the literature suggests that cockle growth rate decreases as population density increases probably due to increased competition for food, and direct interference or disturbance due to burrowing and direct contact between individuals (Orton, 1926; Hancock and Franklin, 1972; Jensen, 1992; Montaudouin and Bachelet, 1996). Montaudouin & Bachelet (1996) reported highest juvenile growth rates at low density (160-200 adults m⁻²) whereas adult growth rates were only depressed at the highest density examined (2000 adults m⁻²). The data from the Exe Estuary suggests that adult cockles are present in densities ~150 adults m⁻², so it is unclear whether the patterns in the average size of cockles observed across sample locations is a result of reduced growth rates at higher densities or due to random variation in cockle sizes across sample sites. However, substantial growth reduction in adult cockles due to food shortage by competition appears to be rare and linked to densities exceeding 800-1000m⁻² (Jensen, 1993; Guenole and Masski, 1999).

Previous evidence shows that cockles on the Exe Estuary are an important food source for several species of bird, with varying preferences of cockle size between bird species (Durell *et al.*, 2007). In particular, the black-tailed godwit, bar-tailed godwit and curlew have been shown to feed on medium cockles (10–19.9 mm), whereas oystercatchers, which are a feature of the Exe Estuary SPA, feed on larger (15–44.9 mm) cockles (Durell *et al.*, 2007). D&S IFCA has noted a significant decline in mussel density on the Exe Estuary following the two previously mentioned mortality events (Stephenson and Henly, 2021). The relatively stable cockle stocks on the Exe Estuary may be enabling the bird populations to persist in this location, despite declines in their other food sources. Continued monitoring of the beds, alongside statistical tests to determine the statistical 'power' to detect changes of a given magnitude will assist with potential future management, including assisting other authorities to determine potential impacts of variation in cockle populations on designated birds species.

In recent years, D&S IFCA has received a number of reports of recreational gathering of cockles, some of which report large quantities being removed. Larger cockles are more likely to be targeted

by the recreational fishers and therefore an increase in recreational landings could impact the density of adult cockles on the estuary. The cause of the small decrease in adult cockle density observed across years (2011–2024) in the Exe Estuary is unknown but the stock size appears to have stabilised recently. Although there is currently no commercial fishery for cockles on the Exe Estuary, D&S IFCA will aim to continue the autumn survey every two years to monitor the cockle stocks that are harvested recreationally and form part of the SPA birds' diet. It may be possible for the data collected from these surveys to feed into a food availability model to see how much cockles contribute in terms of food source for the overwintering birds on the Exe Estuary.

References

- Beukema, J. J., Dekker, R., Drent, J., and Meer, J. van der. 2017. Long-term changes in annual growth of bivalves in the Wadden Sea: influences of temperature, food, and abundance. Marine Ecology Progress Series, 573: 143–156.
- Callaway, R. 2022. 50 years of estuarine cockles (*Cerastoderma edule L.*): Shifting cohorts, dwindling sizes and the impact of improved wastewater treatment. Estuarine, Coastal and Shelf Science, 270: 107834.
- Cefas. 2020. Classification zone maps Cefas (Centre for Environment, Fisheries and Aquaculture Science). https://www.cefas.co.uk/data-and-publications/shellfish-classification-and-microbiological-monitoring/england-and-wales/classification-zone-maps/ (Accessed 10 March 2021).
- D&S IFCA. 2018. Fisheries in EMS Habitats Regulations Assessment for Amber and Green Risk Categories. European Marine Site: Exe Estuary SPA. Devon and Severn Inshore Fisheries and Conservation Authority, Brixham, Devon.
- Durell, S. E. A. L. V. dit, Stillman, R. A., McGrorty, S., West, A. D., and Price, D. J. 2007. Predicting the effect of local and global environmental change on shorebirds: a case study on the Exe estuary, U.K. Wader Study Group Bulletin, 112: 24–36.
- EEMP. 2020. Exe Estuary Management Partnership Wildlife designations. https://www.exe-estuary.org/visitor-information/wildlife/wildlife-designations/ (Accessed 10 March 2021).
- Goss-Custard, J. D., and Verboven, N. 1993. Disturbance and feeding shorebirds on the Exe estuary. Wader Study Group Bulletin, 68: 8.
- Guenole, A., and Masski, H. 1999. The role of biotic interactions in juvenile mortality of the cockle (Cerastoderma edule L.): Field observations and experiement. Journal of Shellfish Research, 18: 575–578.
- Hancock, D. A., and Franklin, A. 1972. Seasonal Changes in the Condition of the Edible Cockle (Cardium edule L.). Journal of Applied Ecology, 9: 567–579. [British Ecological Society, Wiley].
- Hulme, S. 2009. The Effects of an Eco-Elevator Cockle Harvester on Macrofauna Assemblage, Cockle Populations and Sediment parameters within an Intertidal Sand Flat. University of Plymouth, Plymouth, UK.
- Hulme, S., and Lee, V. 2010. The Effects of an Eco-Elevator Cockle Harvester on Macrofauna Assemblage, Cockle Populations and Sediment parameters within an Intertidal Sand Flat.
- Jensen, K. T. 1993. Density-dependent growth in cockles (Cerastoderma edule): evidence from interannual comparisons. Journal of the Marine Biological Association of the United Kingdom, 73: 333–342. Cambridge University Press.
- Jensen, T. K. 1992. Dynamics and growth of the cockle, Cerastoderma edule, on an intertidal mudflat in the Danish Wadden sea: Effects of submersion time and density. Netherlands Journal of Sea Research, 28: 335–345.
- Lee, V. 2010. The impacts of an eco-elevated harvester on Cerastoderma edule stocks, sediment composition and associated macrofauna within the River Exe Estuary. University of the West of England Hartpury College., Bristol, UK.
- Montaudouin, X., and Bachelet, G. 1996. Experimental evidence of complex interactions between biotic and abiotic factors in the dynamics of an intertidal population of the bivalve Cerastoderma edule. Oceanologica Acta, 19: 449–463. Gauthier-Villars.
- Natural England. 2020. European Site Conservation Objectives for Exe Estuary SPA UK9010081. http://publications.naturalengland.org.uk/publication/6369979498758144 (Accessed 10 March 2021).
- Orton, J. H. 1926. On the Rate of Growth of Cardium edule. Part I. Experimental Observations. Journal of the Marine Biological Association of the United Kingdom, 14: 42.
- Pers. comm. Blood-Smyth, M. 2017. .
- QGIS. 2020. QGIS Geographical Information System. Open Source Geospatial Foundation Project. http://qgis.org.
- R Core Team. 2020. R: A language and environment for statistical computing. R Foundation For Statistical Computing, Vienna, Austria.
- Stephenson, K., and Henly, L. 2021. Exe Estuary Mussel Stock Assessment 2020. Devon and Severn Inshore Fisheries and Conservation Authority, Brixham, Devon.

Tyler-Walters, H. 2007. Cerastoderma edule Common cockle. *In* Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. https://www.marlin.ac.uk/species/detail/1384 (Accessed 10 March 2021).